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Abstract 
 

Age forming of lower wing skin structures for civil airframes requires an alloy with good 
age formability and mechanical properties (yield strength, ultimate tensile strength, fatigue 
resistance, toughness). Using property modelling and general metallurgical understanding, 
a series of Al-Cu-Mg-Li (Mn, Zr, Sc) alloys have been designed. After artificial ageing 
representative of age-forming several of the newly designed alloys have yield strength, 
fatigue crack growth resistance and toughness that are at least comparable to the 
incumbent damage tolerant material for such applications, viz. 2024-T351. Coarse grain 
structure and high Li content are seen to be associated with good fatigue resistance but 
reduced formability, and an optimum balance needs to be sought. 
 
 

1. Introduction 
 
In age forming of aluminium alloys for airframe applications, curved wing skin components 
are manufactured by mechanically conforming a plate or sheet over a specifically curved 
tool, with the metal and tool combination then being held (under load) at the alloy’s ageing 
temperature to simultaneously achieve strengthening of the alloy, and creep relaxation of 
the material into the required curvature. Such processing results in significant 
manufacturing cost benefits over established methods (e.g. peen forming). Whilst this 
process is becoming established in upper wing applications, incumbent lower wing skin 
alloys, such as 2024-T351, loose their critical damage tolerant properties upon ageing. 
There is therefore a drive to develop new alloys to meet the age formability requirements 
with mechanical properties (strength, corrosion and damage tolerance) that are at least 
equivalent to 2024-T351 [ 1 ]. In this work, semi-quantitative understanding of 
microstructure-property relationships has been used to formulate an initial group of 
potentially age formable alloys. Subsequent extensive analysis of the microstructure [2] 
and mechanical properties, in combination with modelling of the composition-processing-
property relations was used in an iterative process in the development of further groups of 
alloys [1]. In this paper, selected results from this project are presented, along with basic 
analysis of the main microstructural parameters affecting the mechanical properties. Key 
elements of work on the modelling of these relationships are also discussed. 
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2. Alloy Selection and Property Modelling 
 
The strategy for alloy selection is based on general metallurgical knowledge as well as 
analysis of a previous batch of alloys studied in this project. Processing-microstructure-
properties models were developed during this 
project and used together with existing models 
to formulate the alloys. To date a total of 16 
alloys based mostly around the Al-Cu-Mg 
system have been designed. This paper will 
focus on 8 alloys, as listed in Table 1.  It may 
be noted that Alloys 5 & 6 are close to 
standard 2024, with Alloy 5 being particularly 
modified by the addition of Zr and a very small 
amount of Li.  

.

 
2.1 Age Formability/Creep 
 
Many precipitation sequences can occur in Al-Cu
Generally creep resistance decreases with 
decreasing overall yield strength. Alloys con
precipitates are thought to be suitable for achiev
mechanical properties and high creep rates that a
 
2.2 Yield Strength 
 
An age hardening model has been developed t
alloys with composition within the α+S phase
Compositions of alloys 2-4 and 7-10 are aimed 
significantly exceed 2024-T351 yield strength 
detrimental to toughness in aluminium alloys [6]. 
 
2.3 Fatigue Crack Growth Resistance 
 
Fatigue crack closure is beneficial to fatigue crac
enhanced by the presence of shearable precipita
of roughness induced crack closure has been
relation between fatigue crack growth (FCG) 
underaged alloys generally show a better FCG 
down the precipitation process in these alloys co
reduced Cu+Mg content and also by microalloyin
 
2.4 Toughness 
 
Coarse intermetallic particles are detrimental to 
precipitates such as δ' (Al3Li) have also been rep
to in-service embrittlement. Therefore, in the alloy
in service δ' formation.   
 
 

 
 

Table 1: Compositions of the alloys studied
Alloy Cu Mg Zr Mn Sc Li 
3 2.27 1.03 0.11 0.01 - 1.56
4 2.24 0.94 - 0.42 - 1.60
5 4.30 1.46 0.06 0.43 - 0.17
6 4.34 1.37 - 0.42 - - 
7 2.08 0.97 0.11 - 0.21 0.55
8 2.22 0.90 0.11 - - 0.57
9 1.48 1.43 0.11 - - 0.54

10 2.10 0.9 0.11 - - 0.74

-Mg alloys with Li additions (S, θ, Ω, T1). 
decreasing solution strengthening and 
taining a limited amount of fine S'/S 
ing a good balance between the desired 
re beneficial for age formability.   

o predict the yield strength of Al-Cu-Mg 
 field of the phase diagram [ 3 , 4 , 5 ]. 
to achieve a yield strength that does not 
as increasing yield strength is broadly 

k growth resistance [7]. Crack closure is 
tes and large grains. An analytical model 
 developed to provide semi-quantitative 
and microstructural features [8 ,9 ].  As 
resistance, alloy design aims at slowing 

mpared to 2024. This can be achieved by 
g with Li and Zr [1].  

the fracture toughness [6]. Li containing 
orted to be detrimental to toughness due 
 formulations, Li additions are low to limit 
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3. Experimental Procedures 
 
Experimental alloys (Table 1) have been manufactured at QinetiQ, Farnborough, UK. 
Billets were cast, stress relieved, homogenized, hot rolled to 20mm thickness, solution 
heat treated, cold water quenched and plastically stretched by ~2.5%. Except for solution 
treatment temperatures, the processing was essentially the same for all alloys (optimum 
solution temperatures for individual alloys were identified via DSC measurement). To 
simulate ageing during age forming, heat treatments at 150°C and 190°C were performed. 
For comparison, commercial 2024-T351 was also tested. All specimens for testing were 
manufactured from the mid-thickness of the plates. 
 
Tensile tests in rolling direction (L orientation) were carried out according to ASTM E8.  
Toughness ranking tests was performed on alloys aged for 12h at 150°C and 190°C. 
Charpy slow bend testing, according to ASTM E-812, was used to define a ‘crack strength’ 
value which is related to the plane strain fracture toughness of these alloys (however valid 
data could not be obtained for alloys with low UTS levels, see Section 4).  Fatigue crack 
growth tests were carried out on materials aged for 12h at 150°C and 190°C according to 
ASTM E-647 using compact tension specimens taken in the LT orientation. Tests were 
performed in air using a loading frequency of 20Hz and a stress ratio of 0.1. 
Age formability was assessed via creep tests conducted for 20h. Tests were conducted in 
tension with an applied stress of 150MPa at 190°C.  Details of DSC, TEM, FEG-SEM and 
EBSD experiments are presented elsewhere [3,10]. 
 
 

4. Results and Analysis 
 
A wide range of microstructures was obtained in these alloys. The Mn, Zr and Sc additions 
gave rise to different grain structures, see Figure 1. The Mn-containing alloys 4, 5 and 6 
were predominantly found to be recrystallised with coarse grains, whilst the Zr-containing 
alloys (alloys 3, 8, 9, 10) were only partially recrystallised with smaller grain sizes. A 
particularly fine grain structure was evident in the Zr and Sc containing Alloy 7.  
 

A5 A7 A8 

500 µm 1000 µm 100 µm

Figure 1: EBSD maps of TS face of alloys 5 (Mn-containing), 7 (Zr+Sc-containing) and 8 (Zr-containing). 
 
In terms of strengthening precipitates (see Figure 2 and Refs [2-5]) a distinct difference 
was observed between alloys aged at 150°C and 190°C with the former containing 
predominantly clusters and the latter S phase. Evidence of some δ' precipitates was found 
in alloy 3 and 4, with L12 ordered composite β'(Al3Zr)/ δ' particles appearing in alloy 3. 
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The ultimate tensile strength (UTS) and yield strength for alloys 3-10 aged at 190°C are 
shown in Figure 3. Alloys 5 and 6 have a yield strength and UTS that is significantly higher 
than 2024-T351.  Alloys 3, 4, 7, and 8 achieve tensile properties comparable or better than 
2024-T351 after ageing.  Alloys 9 & 10, with reduced Cu+Mg levels exhibit lower strengths. 
 

 
Figure 2: TEM microgr
3 aged 72h/150°C (B=
β'(Al3Zr)/δ' particles, b
(B=[100]) showing 
corresponding SAD pat

100 nm

(b)  

 
It should be noted t
reduced solute conte
10 reach peak stre
presented) confirme
yield strength results
model predictions [3
150°C showed an in
This means that all
treatment and/or com
 
Results of the tough
toughness), is plotte
perform well, consis
(increasing resistanc
the desired toughnes
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hat the strategy devised to slow down the precipitation process, i.e. 
nt and microalloying, has been successful as alloys 3, 4, 7, 8, 9 and 

ngth well after alloys 5 and 6 do. Additional DSC experiments (not 
d the reduced rate of S phase formation on addition of Li. Measured 
 were generally in good agreement with expected yield strength from 

,4]. Comparison of tensile properties for specimens aged at 190°C and 
creased yield strength of up to 100MPa for the alloy aged at 190°C [1]. 
oys YS/UTS properties can be ‘fine tuned’ by adjusting the ageing 
position to achieve the target strength properties. 

ness ranking exercise are given in Figure 4, where crack strength (i.e. 
d as a function of yield strength. The Alloys 3 and 7 are seen to 

tent with their fine grain structures and use of Zr or Zr+Sc dispersoids 
e to shear decohesion). From these results it seems that achieving 
s level is not a limiting factor in the alloy design. 
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Figure 4: Crack strength for alloys 3,4,5,7,8
190°C for 12h compared to 2024T351. 
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Figure 3: UTS (a) and PS (b) for alloys 3-10 aged at 190°C. 
 
The FCG rates for alloys 3-10 aged at 190°C for 12h are plotted in Figure 5
lower limit for 2024-T351 data. 
Results of tests performed on 
specimens aged at 150°C for 12h 
showed the same relationships 
between alloys. Alloys heat 
treated at 150°C for 12h have 
better FCG resistance than alloys 
aged at 190°C for 12h, which are 
closer to peak strength [1]. Figure 
5 shows that FCG resistance for 
all alloys is at least comparable to 
2024-T351, except for alloy 7 at 
intermediate ∆K.  The influence 
of the grain structure was clearly 
seen: large, recrystallised grains 
were seen to enhance fatigue  
performance in alloy 4 compared 
to alloy 3. This is also highlighted 
by the relatively poor performance 
of alloy 7, which exhibits a very fine 
grain structure. Some detrimental effect of an increased content of non
precipitates content in alloy 5 is suggested when compared to alloy 4, see F
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However, this difference can also be influenced by the difference in Li cont
effect of Li is not explicitly separated in these alloys, a beneficial effect 
content may also be suggested here. Within the group of alloys assessed
evidence of microstructural influence on crack growth behaviour. The re
crack closure on the fatigue performance of the different alloys is discus
[8,9]. 
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Figure 5: Fatigue crack growth rate vs ∆K for alloys 3-10 aged at 190°C for 12h. 

 
Figure 6 shows the results of creep tests performed on alloys 3, 4, 5, 7 and 8 at 190°C at a 
stress of 150MPa. A range of creep rates is observed. Again the grain structure appears to 
be a first order influence, with the smallest grain size alloy (A7) exhibiting the highest 
deformation. However, other parameters have to be considered, with comparison of alloy 4 
and 5, and alloy 3 and 8 suggesting a detrimental effect of Li on formability.   
 
In general the creep rates for the present under aged alloys are comparable to creep rates 
of other alloys used in commercial age forming operations (particularly 7xxx-series), and 
hence the present alloys may be considered to be age formable. 
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Figure 6: Creep tests results for alloys 3, 4, 5, 7, 8 at 190°C at a stress of 150MPa. 
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5. Concluding Remarks 
 
So far, results show that after artificial ageing simulating age forming the 3 main properties 
(yield strength, FCG resistance and toughness) of several of the new alloys are at least 
comparable 2024-T351. The only property that degrades for the new alloys relative to the 
incumbent material is the ultimate tensile strength. Current work is aimed at alleviating 
this. Influences on the overall property balance have been identified, and especially the 
balance between formability (as identified from creep rates) and fatigue crack growth 
resistance is important.  The balance is especially influenced by grain structure and Li 
content.  The current results indicate that there is a clear potential for damage tolerant 
age-formed structures using newly defined alloys, provided the balance between 
composition and forming conditions is fine tuned to give the right properties and the cost of 
the new alloys is competitive.  
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