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Abstract 
 

This study aims to gain insight into the early stages of precipitation hardening by 
determining the energetics of atom replacement by first principles computations. Density 
functional theory calculations using the ABINIT code were performed to determine 
cohesive energies and the equilibrium lattice constants of aluminium and copper for the 
conventional face centred cubic structure of 4 atoms. These were extended to periodic 
super cells of different cubic geometries and with primitive cell size of up to 32 atoms with 
replacement of a single aluminium atom by copper.  
 
 

1. Introduction 
 
The aluminium - copper alloy system has been the subject of much computer modelling. 
Most simulations employ semi-empirical methods, using system specific 
parameterisations, often in terms of interatomic potentials [1-3]. However, considerable 
progress has been achieved using so-called first principles methods in which the 
numerical schemes are formulated within the framework of quantum mechanics with 
minimal parameterisation [4,5]. This paper employs one such first principles method to 
investigate the substitution of copper into aluminium.  
 
 

2. Method 
 

2.1. Model Systems 

a        b            c  
 

d             e  
Figure 1:  Unit cells used to study substitutional copper (light coloured balls) in face-centred cubic aluminium 
(dark coloured balls). Illustrations were generated using the XCrysDen program [6]. 
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Substitutional properties of copper in aluminium were investigated using the pure metallic 
face-centred cubic (fcc) structures compared with the periodic structures illustrated by the 
unit cells shown in Figure 1. These consist of collections of fcc aluminium cells, where 
selected aluminium atoms are replaced with copper.  
 
In all five structures, all copper atoms occupy equivalent sites within the bulk solid, i.e., 
sites of simple cubic [Figures 1(a) and 1(e)], body-centred cubic [Figure 1(c)] and fcc 
[Figures. 1(b) and (d)] lattices respectively.  
 
Such regular arrangements of atoms are clearly idealisations of real dilute solid solutions 
where solute atoms would occupy sites at random (before any clustering or precipitate 
formation). However, the periodicity of the model systems permits the determination of 
observable properties of the solids by the use of Bloch formalism together with tractable 
approaches to the fundamental laws of quantum mechanics that govern the interaction 
between nuclei and electrons. 
 
2.2. Frozen Core Approximation 
 
Structural properties were determined by minimising the total energy of the system with 
respect to atomic positions and unit cell geometry. This was carried out by first performing 
electronic calculations for fixed atomic positions within the Born-Oppenheimer 
approximation [2], where the slow motion of heavy nuclei are decoupled from the motion of 
electrons. Furthermore, for the calculation of the electronic structure of the solids, the 
present study employs the frozen core approximation in which the valence electrons are 
considered to move in a static background potential due to Coulomb interaction with frozen 
nuclei and frozen core electrons, which are tightly bound to nuclei. Accordingly it is only 
the valence electrons that participate in chemical bonds and determine the nano-structure 
of the solid. Aluminium atoms were modelled using a neon-like frozen core with three 
valence electrons and copper by an argon-like core with 11 valence electrons.  
 
2.3. Density Functional Theory 
 
Electronic structure of the solids was computed within the framework of density functional 
theory (DFT) [8,9]. The advantage of DFT over other ab initio methods is that it efficiently 
describes all observable properties of the system in its ground state in terms of the 
electronic charge density, rather than the computationally intractable many-body wave-
function.  The charge density is determined by solution of the Kohn-Sham (KS) equations 
for single-particle-like wavefunctions or orbitals [9]. These orbitals are analogous to the 
one electron orbitals in the non-interacting approximation, except that the potential term in 
the KS equations depends on the orbitals themselves. Thus the equations must be solved 
iteratively, until a self-consistent solution is found. After this process is completed and to 
determine the equilibrium or stress-free structure, the total energy of the system needs to 
be minimised numerically with respect to atomic positions and unit cell geometry. 
 
For the present study, the KS equations were solved using the ABINIT software package 
[10]. The code is able to determine the electron density and related properties, including 
total energy, forces on nuclei, and internal stress due to non-equilibrium unit cell geometry. 
The latter two are utilised by the code in searching for the energy minimised, relaxed, 
crystal structure. The frozen atom cores are modelled using the norm-conserving 
pseudopotential (PSP) approximation, which allows the projection of the Kohn-Sham 
orbitals on to a computationally efficient orthogonal plane wave basis set. The 
pseudopotentials for aluminium and copper were generated using the FHI98PP [11]. 
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While DFT can be considered an exact theory, its practical application requires the use of 
a numerical approximation to the exchange correlation functional (XCF) which describes 
the many-body quantum interaction between electrons. For the present study, the Perdew-
Burke-Ernzerhof generalised gradient approximation (GGA) [12] was used for the XCF. 
 
2.4.  Numerical Accuracy 
 
Key parameters that determine the quality of the numerical results are the length Lk of 
shortest supercell vector, the Fermi level smearing parameter Etsm, and the kinetic energy 
cut-off Ecut. As input and/or output variables for the ABINIT code, these parameters are 
denoted by identifiers kptrlen, tsmear and ecut, respectively. We give a brief description of 
the role of these variables in the following. 
 
Parameter Lk is the size of the bounding box over which periodic boundary conditions are 
imposed on the wave function. The bounding box contains an integral number of primitive 
unit cells, equal to the number of distinct Bloch wavevectors k [13] for which the KS 
equations must be solved. Lk needs to be sufficiently large so that the computational 
model is a good approximation to the macroscopic solid. In practical terms this means that 
physical quantities of interest are converged with respect to Lk. 
 
As we are dealing with metallic systems, the valence and conduction bands overlap, and 
the number of occupied orbitals is k-dependent. Consequently, the total energy is not a 
smooth function of other physical properties of the system and computational parameters. 
To avoid numerical instabilities this can lead to, a smearing of the occupation numbers 
near the Fermi level is applied using a smearing window of width Etsm [14]. If the smearing 
parameter is too large, however, the accuracy of the results may be compromised. 
 
Finally, the maximum kinetic energy Ecut of the KS quasi-particles is used to limit the size 
of the plane wave basis set on which the wavefunctions are expanded. For a given unit 
cell, this parameter usually dominates the computational complexity of the problem. 
 
 

3. Results and Discussion 
 
3.1. Convergence of Total Energy and Lattice Geometry 
 
To ensure adequate numerical accuracy in the results, convergence studies were carried 
out for the pure metals and for the smallest binary system Al3Cu [Figure 1(a)] with four 
atoms per unit cell. Figure 2 shows results for the convergence of calculated energies with 
respect to parameters Ecut and Lk. 
 
The energy of formation of the binary alloy from pure metals is determined by energy 
differences between the relaxed binary structure and the pure metals. It is plotted as a 
function of Ecut in Figure 2(a) for fixed Lk = 56 Å and Etsm = 0.54 eV. The results indicate 
that  Ecut > 1000 eV is adequate for an accuracy of about 0.01 eV, and for Ecut > 1200 eV 
the uncertainty is less than 0.001 eV. These results may be extended to larger unit cells by 
recognising that the numerical error in the energy of formation can be expected to scale 
linearly with the number of atoms in the unit cell. Analogous results for the unit cell 
geometries indicate less than 0.004 % numerical error in the lattice parameter for 
Ecut > 1000 eV. 
 
Figure 2(b) shows how the calculated value of the total energy per unit cell of Al3Cu 
depends on the size Lk of the system, for selected values of Etsm and a fixed 
Ecut = 1088 eV. The data show that at Etsm = 0.04 Ha = 1.09 eV, the smearing of the Fermi 
level is excessive and dominates numerical errors in the limit of large system size, while 
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for Etsm < 0.6 eV, the accuracy is good, with errors less than about 0.001 eV for Lk > 50 Å. 
Uncertainty in lattice parameters is also small in this regime, less than 0.004 %. 
Quantitatively similar results were obtained for pure copper, while numerical errors are 
about an order of magnitude smaller for the free-electron-like pure aluminium. 
 
On the basis of these convergence tests the results presented below were obtained with 
Ecut = 1224 eV, Etsm = 0.27 eV and Lk > 60 Å. 
 

Figure 2:  Convergence of numerical results with respect to 
formation per unit cell of Al3Cu [Figure 1(a)] from pure metal
detail for large values of Ecut. (b) Plot of total energy per unit
size Lk, for three values of Fermi level smearing window widt

a 

 
3.2. Energy of Formation of Binary Alloys from Pur
 
Results for the energy of formation Eform per primit
pure metals are shown in Tab. 1, for the five struc
the data show the reaction n Al + Cu  →  AlnC
Eform < 0. At copper concentrations of 1 in 16 atom
consistent within numerical error, indicating a heat
for copper in aluminium. This agrees with the expe
it is well known that care must be taken when high
in comparison with zero temperature calculations
extrapolated from those at finite values [16]. At a c
energy of formation is calculated to be - 0.18
contribution from the interaction between copper 
limit.  
 
Table 1: Calculated energy of formation Eform per primitive un
from pure metals. 

n 3 7 1
Eform (eV) - 0.130(1) - 0.180(2) - 0.1

 
3.3. Effect of Copper Concentration on Lattice Geo

 
Table 2 shows our results for the relaxed geome
metals, as well as experimental values for solid so
pure metals [17,18].  
 
For pure aluminium, the agreement between theo
error of about 0.1% in the theoretical value of th
much larger for copper, however, at about 2 %. T
the GGA and the frozen core PSP approximation in
of the electronic charge density associated with the

 

b
  
computational parameters. (a) Plot of energy of 
s against kinetic energy cut-off Ecut. Inset shows 
 cell of Al3Cu as a function of numerical system 
h Etsm (1.00 Ha = 27.2 eV). 

e Solids 

ive unit cell, i.e., per copper atom, from 
tures shown in Figure 1. For all cases, 
u to be energetically favourable, with 
s or less the energies of formation are 

 of solution of about - 0.13 eV per atom 
rimentally derived value [15]. However, 
 temperature experimental data is used 
 and zero concentration properties are 
opper concentration of 1 in 8 atoms the 
 eV, indicating a significant energy 
atoms that is not present in the dilute 

it cell of model solids AlnCu, shown in Figure 1, 

5 26 31 
29(4) - 0.135(7) - 0.127(8) 

metry 

tries of the Al-Cu systems and for pure 
lutions of copper in aluminium and the 

ry and experiment is excellent, with an 
e lattice parameter. The discrepancy is 
his is attributable to increased errors in 
 the presence of rapid spatial variations 
 3d orbitals of the transition metal. 
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For the model systems shown in Figure 1(a) and (b), with four and eight atoms in the 
primitive unit cell, respectively, geometry optimisation resulted in a uniform contraction of 
the crystal lattice. The fcc structure of the host lattice was retained due to symmetry.  
The contraction of the lattice corresponds to a decrease in lattice parameter by 2.4 % for 
Al3Cu and 1.2 % for Al7Cu (see Tab. 2). For the three larger unit cells with lower copper 
concentrations [Figures 1(c)-(e)], the fcc structure of the aluminium host lattice was found 
to be significantly perturbed by the presence of substitutional copper. The strain was found 
to be greatest near copper atoms, with a consistent reduction of separation between 
copper and nearest-neighbour aluminium atoms by 1.5 %, while the overall contraction of 
the lattice was smaller, at roughly 0.5 %. Table 2 shows the mean lattice parameters for 
the periodic solids, defined in terms of the change in volume of the unit cell. 

 
Table 2: Present (theoretical) and experimental results for the lattice parameter of Al-Cu alloys and the pure 
metals. 

 atom % Cu lattice parameter (Å)  
25.0 3.9436(2) 
12.5 3.9908(2) 
6.25 4.0208(2) 

3.7037 4.0307(2) 
3.125 4.0330(2) 

Theoretical 

1.62 4.0335(5) 

Binary alloys 

1.37 4.0347(8) Experimental [17] 

4.0465(1) Theoretical 0.00 (pure Al) 4.0413(4) Experimental [17] 
3.6777(2) Theoretical Pure metals 

100.0 (pure Cu) 3.6149(1) Experimental [18] 
 

To better facilitate comparison between theory and experiment, we have calculated the 
relative change, <a> / aAl, in mean lattice parameter <a> compared with the lattice 
parameter aAl of pure aluminium. The data are plotted in Figure 3, and show good 
agreement between theoretical and experimental results. 

 
Figure 3: Comparison of experimental [17] and theoretical results for the relative change in lattice parameter 
of aluminium, after the introduction of substitutional copper. Symbols <a> and aAl denote the mean lattice 
parameter for the binary alloy and for pure aluminium, respectively. 
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4. Conclusions  

 
First principles computational studies of substitutional copper in aluminium were carried 
out. The energy of formation of periodic solids with primitive unit cells containing one 
copper and up to 31 aluminium atoms indicates a heat of solution of - 0.13 eV for copper 
in aluminium. Theoretical results for the change in the volume of the bulk solid as a 
function of copper content show good agreement with experiment. 
 
 

Acknowledgements 
Computations were performed at the HPC facilities of the Victorian Partnership for 
Advanced Computing http://www.vpac.org (Expertise Grant Scheme) and the Australian 
Partnership for Advanced Computing http://www.apac.edu.au (Merit Allocation Scheme). 

 
 

References 
 

[1] C. Lane Rohrer, Modelling Simul. Mater. Sci. Eng., 2, 119-134, 1994. 
[2] M. Widom, I. Al-Lehyani and J.A. Moriaty, Phys. Rev. B 62, 3648-3657, 2000. 
[3] G. Bozzolo et al., Comput. Mat. Sci., 15, 169-195, 1999. 
[4] C. Wolverton, Acta Mater., 49, 3129-3142, 2001. 
[5] T. Hoshino et al., Comput. Mat. Sci., 14, 56-61, 1999. 
[6] A. Kokalj, J. Mol. Graphics Modelling, 17, 176, 1999. See also http://www.xcrysden.org. 
[7] G.D. Mahan, Many-Particle Physics, 3rd edn., Kluwer Academic/Plenum Publishers, 2000, p. 27. 
[8] P. Hohenberg and W. Kohn, Phys. Rev., 136, B864-B871, 1964. 
[9] W. Kohn and L.J. Sham, Phys. Rev. 140, A1133-A1138, 1965. 
[10] X. Gonze et al, Comput. Mat. Sci., 25, 478-492, 2002. (The ABINIT code is a common project of the 

Université Catholique de Louvain, Corning Incorporated, and other contributors. See  
http://www.abinit.org.) 

[11] M. Fuchs, M. Scheffler, Comput. Phys. Commun., 119, 67-98, 1999. 
[12] J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77, 3865-3868, 1996. 
[13] C. Kittel, Introduction to Solid State Physics, 4th edn., John Wiley & Sons, 1971, pp. 299-310. 
[14] N. Marzari et al., Phys. Rev. Lett., 82, 3296-3299, 1999. 
[15] R. Hultgren et al., Selected Values of the Thermodynamic Properties of Binary Alloys, American 

Society for Metals, 1973, p. 154. 
[16] G.J. Ackland and V. Vitek, Phys. Rev. B 41, 10324-10333, 1990. 
[17] H.J. Axon and W. Hume-Rothery, Proc. Royal Soc. Lond. A, 193, 1-24, 1948. 
[18] M. E. Straumanis and L. S. Yu, Acta Crystallogr., 25A , 676-682, 1969. 

 

http://www.vpac.org/
http://www.apac.edu.au/
http://www.xcrysden.org/
http://www.abinit.org/

	2.2. Frozen Core Approximation
	Acknowledgements


