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Abstract 
 

Compression tests carried out on aluminium specimens showed that when the die was 
rotated the compression load dropped. A slab method is employed to examine this 
process. The load reduction is explained by the deviation of friction vector due to the 
relative circumferential movement between the die and the material. This mechanism is 
incorporated into a theoretical model and an expression is derived for compression 
pressure. Analytical solutions established compare favourably with experimental results. It 
is also shown that there is a limitation to the load reduction: the compressive load can 
never be lower than 70 percent of the yield limit. 

 
 

1. Introduction 
 

Compression or upsetting of cylindrical workpieces is one of most fundamental operations 
in the metal forming industry. It is well known that during this process interfacial friction 
leads to the development of inhomogeneous plastic deformation inside the material [1]. A 
higher frictional resistance demands larger forming loads and tends to shorten tool life. A 
number of methods have been developed to reduce or eliminate these negative effects of 
friction. Siebel and Pomp [2] suggested using conically convex platens which matched 
conical cavities at the ends of the sample. The conical platen was capable of reducing 
friction, but the deformation was still inhomogeneous [3]. Polosatkin [4] proposed using 
platens which rotated around an axis lying parallel to the axis of the cylindrical specimen. 
The die rotation approach reduced compression loads and also decreased the sidewall 
bulging effect with a more homogeneous deformation developed [5-7].  
 
A number of workers have examined compression between rotating dies, using plasticine 
[5,6], or aluminium alloys [7]. These experimental observations verified that die rotation 
leads to a decrease in the compression load and the degree of bulging. Moreover, the 
tests made by the present authors [7] revealed that not all the torque power supplied by 
the rotating platen was transferred into twisting the bulk of the material, which led to a 
circumferential slippage between the rotating tool and the material.  
 
At least two mechanisms were identified in [8] to account for the reduction in compressive 
load that accompanies die rotation: one involves the reduction in the interfacial frictional 
resistance at the radial direction, and the other is based on the introduction of an internal 
twist shear stress. Various analytical models have been developed to incorporate either 
one or two of these mechanisms. These include the standard stress analyses [9-11] and 
the upper bound approach [7,12-15]. Finite element analyses of compression with die 
rotation have also been carryout out in [5,6,14,16].  
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Circumferential slippage was not considered in these numerical simulations although a 
load reduction was observed when dies were rotated.   
 
Experiments show that the degree of material twist is so low that it can safely be ignored at 
moderate compressive strains [7,8]. Therefore, the following stress analysis assumes that 
the only mechanism accounting for the compression load drop using rotating die is the 
diversion of friction stress vector due to the relative circumferential movement between the 
die and the material. The normal stress distribution over the tool/material interface can be 
established from this analysis and an estimate of load reduction limit is derived. 
 

2. Slab Analysis 
 

 
 

 
Figure 1: An infinitesimal element slice. 

The compression speed of the axially driven platen is U&  and the angular velocity of the 
rotating platen is dω& . The material is assumed to be compressed without any twisting. In 
Figure 1, a material element slice is bounded on two sides by two radial planes passing 
through the symmetrical axis y and enclosing an angle dθ, and by two concentric cylinders 
of radius r and r + dr. The height of slice is the same as the height H of the specimen. In 
compression without die rotation, the material point P on the top surface of the element 
has a relative velocity rU&  in the radial direction to the corresponding point P' initially 
adjacent to it on the die. Die rotation causes P to have an additional relative velocity 
component θU&−  in the circumferential direction. Thus, the shear stress, µp, due to friction 
on the material, acts on an angle of φ to the circumferential direction (where µ is the friction 
coefficient and p is the compression pressure). φ is also equal to the acute angle between 
the direction of reU&  (the resultant relative velocity of point P) and θU&− . If homogenous 
deformation is assumed, the radial velocity of point P may be expressed as: 
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The equilibrium equation of the element gives: 

H
µp
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dσ θrr φsin2
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Assuming that the von Mises yield criteria is obeyed for the material, the yield equation for 
point P can be described as: 

( ) ( ) ( ) 2
0

222 2sin6cos62 σφφ =++− µpµppσ r     (5a) 

where 0σ  is the yield stress from the tensile test.  

Eq. (5a) can be reduced to: 
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Inserting Eq. (5) into (4) gives: 
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After integrating Eq. (6), p can be expressed by: 
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where C is a constant that can be determined by the boundary condition: 0==Rrσ  (R is the 
outer radius of the sample). Setting σr = 0 in Eq. (5) gives:  

2
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=p  ( r = R)     (8) 

Substituting Eq. (8) into Eq. (7) results in:  
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Thus, Eq. (7) may be converted into: 

( ) φ
µ

µµ
σ

µµ
σ

µ
sin2

31
3arcsin33arcsin3

31
ln

2
2

0

2

0

2

rR
H
µpp

−+














+
=








+













 +   (10) 

The expression about p in Eq. (10) is in an implicit form and a closed form is difficult to 
find. However, the square root in the right-hand side of Eq. (5) can be removed by noting 
that pµσ 30 ≥  and employing the following simplification: 

21
2
2

2
1 7.012.1 aaaa −≈−  (a1 ≥ a2≥ 0)    (11) 

This linear approximation is the best linear fit over the range of a1 ≥ a2≥ 0 by the least 
square fitting method. Eq. (5) can therefore be approximated by: 

( ) 012.121.10.1 σµσ −+≈ pr      (5b) 

Consequently, Eq. (10) is reduced to: 
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Furthermore, if the shear stress in Eq. (5) is ignored, Eq. (10) can be reduced to: 

( ) 



 −= φµσ sin2exp0 rR
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p       (12b) 

Finally, the compression load Pc according to Eqs (12a) and (12b) can be expressed by: 
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3. Discussion 
 

Eqs (13a) and (13b) relate the angular velocity of the die to the reduction of compression 
load. Figure 2 illustrates the distribution of compression pressure calculated by Eq. (13b) 
for a compression speed of 1.0 mm/sec, an angular velocity of 0.6 rad/sec, and a height 
and radius both of 1.0 mm. It can be seen that die rotation is predicted to decrease the 
compression load. In fact, the die rotation diverts the friction vector in Figure 1 and this 
effect causes a smaller effective friction coefficient in the radial direction, i.e. φµµ sin=r . If 

( )∞→→ dωφ &0 , the compression pressure approaches the yield stress 0σ .  
 
Figure 3 shows the effect of angular velocity of the die on the reduction in the compression 
load normalized by the yield stress using Eq. (13b). For these tests, the initial height and 
radius are 12 and 4 mm, the compression speed is 31 mm/min, and the instant height is 
7.2 mm (corresponding to an engineering compressive strain of 40%). Also shown are 
experimental data obtained using an Aluminium alloy (yield stress of 250Mpa [8]). It can be 
seen that theoretically the efficiency of load reduction using tool rotation is less with 
increasing the angular velocity of the die. This effect agrees, qualitatively, with experiment. 
The discrepancy between them may be due to the ignoring of the material twisting in the 
analytical treatment. It is expected that the inclusion of the twist shear deformation is 
capable of decreasing the forming load further [8]. The experimental observation of 
increasing load reduction with increasing friction is also replicated by the model [17]. 
 
Furthermore, if the radial stress σr is neglected in the expression of the yield equation of 
Eq. (5a), the stressed state becomes plane stress and Eq. (5a) reduces to: 

2
0

31 µ
σ
+

=p        (14) 

It is clear that the compression pressure is less than the yield stress if the coulomb friction 
µ is present. When µ approaches its maximum value of 31 , p attains a minimum, pmin: 

0
0 707.0
2
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 Figure 2: Distribution of compression Figure 3: Compression loads under various  
 pressure. rotating speeds of the die. 
 
Therefore, the compression pressure may be reduced to 70 percent of yield stress at the limit 
condition. This statement agrees with the experimental observation [17] in which the reduction 
percentage in compression load is found to be no more than 30% of the yield stress of 
Aluminium alloy (250Mpa).  
 
 

4. Conclusion 
 
In this conventional slab analysis, the only mechanism for the compression load drop with 
rotating die is diversion of friction stress vector due to the relative circumferential movement 
between the die and the material. Nevertheless, the expressions for compression pressure in 
Eqs (10) and (12a) do include the interfacial shear stress but they are only suitable for low 
friction conditions. The analytical result shows that the level of compression pressure can be 
lowered using die rotation. It also suggests that there is a limitation for the load reduction that 
is never larger than 30 percent of the yield limit. 
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