
Proceedings of the 9th International Conference on Aluminium Alloys (2004) 1116 
Edited by J.F. Nie, A.J. Morton and B.C. Muddle 
© Institute of Materials Engineering Australasia Ltd 
 

 
 

Simulation of Precipitation Processes in Commercial Aluminum Alloys 
 

G. Gottstein1, M. Schneider1, L. Löchte2

 
1 Institut für Metallkunde und Metallphysik, RWTH-Aachen, Kopernikusstraße 14, D-52056 Aachen 

2 Hydro Aluminium Deutschland GmbH, R&D Centre Bonn, Georg-von-Boeselager-Straße 25, D-53117Bonn 
 
Keywords: simulation, homogenization, phase transformation, precipitation kinetics, nucleation, growth, 
ripening, coarsening 
 
 

Abstract 
 

The previously presented Classical Nucleation and Growth model (ClaNG) of precipitation 
in aluminum alloys [1] was extended to describe simultaneous nucleation, growth and 
coarsening of several types of spherical precipitates for different heat treatments. It 
predicts the precipitation kinetics during annealing 1xxx, 5xxx and in particluar 3xxx series 
alloys. In order to describe the mentioned alloy systems with respect to phase diagram 
and latent heat over the whole range of temperature and concentrations, the model utilizes 
the commercial Gibbs energy minimizer ChemApp (GTT Technologies, Herzogenrath, 
Germany) [2] and thermodynamic databases which enables to calculate the chemical 
driving forces and equilibrium compositions. The main advantage of this strategy is no 
restriction to a special alloy system. 

 
 

1. Introduction 
 

As a result of high cooling rates during the direct chill (DC) casting process of Al-Mn-Mg-
Fe-Si alloys (typically AA3xxx series) Mn and Fe are quenched in a solid solution, due to 
their slow diffusion kinetics. Therefore the as-cast condition is far from thermodynamic 
equilibrium. One of the main goals of the industrial process of homogenization is to 
precipitate Mn and Fe and to eliminate microsegregations. 
 
During heating of the as-cast ingot up to homogenization temperature a variety of phases 
develop. Each of these phases can change its composition and its amount. From a 
metallurgical point of view the process is mainly dominated by nucleation and growth of 
AlMn-dispersoids, as well as dissolution and transformation of other phases. The kinetics 
of phase transformations in Al-alloys are of particular interest and have been investigated 
by several authors [3,4,5,6,7,8]. 
 
Our experimental work focused on structural investigations of the influence of each 
alloying element. For a detailed characterization of the metallurgical processes that 
determine microstructure evolution during homogenization of an as-cast ingot, isothermal 
heat treatments with model alloys (AlMn1Mg1, AlMn1Mg1Fe0.45 and 
AlMn1Mg1Fe0.45Si0.2) as well as the commercial AA3104 alloy in combination with real 
process data for pre-heating were carried out to validate the model. 
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The results of the experimental investigations recommended some extensions and 
modifications of the nucleation model and the growth law. In order to describe the changes 
in the equilibrium composition of the phases at different temperatures and phase 
transformations without dissolution, a improved diffusion model was added. 
 
 

2. General Outline of the Model 
 
The combination of thermodynamic and kinetic data enables the user to simulate the 
simultaneous nucleation, growth and coarsening of precipitates. Usually, size classes of 
precipitates are used for the simultaneous simulation of these metallurgical mechanisms in 
models without spatial resolution [9,10,11,12,13]. In this analytical model the number and 
size distribution of the precipitates for each precipitating phase will be stored in histogram 
functions. Combining the nucleation rate dN/dt and the coarsening law in the continuity 
equation, it is possible to describe the evolution of the whole precipitate size distribution 
f(r,t) [1]. Since all equations are given in a differential form with respect to time, non-
isothermal conditions can be approximated by stepwise isothermal conditions. According 
to different metallurgical mechanisms the model is subdivided into submodels which are 
coupled in an incremental way [Figure 1]. 
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Figure 1: Program flow chart and incremental coupling of submodels. 

 
As shown in [1] it is possible to describe the evolution of the whole number and size 
distribution f(r,t) by combining the nucleation rate and the growth law in the continuity 
equation. 
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Since an analytical solution of this partial nonlinear inhomogeneous differential equation 
can not be obtained, it was solved numerically in a similar manner as postulated by 
Kampmann and Wagner [14]. 
 
 

3. Pipe Diffusion Model 
 
The influence of dislocations was considered in terms off accelerated diffusion. The main 
influence on the kinetics is due to the change of the diffusion coefficient. Assuming that 
dislocations act as a high conductivity path for diffusing atoms through a lattice the 
resulting diffusion coefficient Dacc,i can be expressed for each element as [15] 
 i,pipeii,acc DgDD ⋅+=  (2) 
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where  is a geometric scaling factor and Dg i is the matrix diffusion coefficient represented 
by the activation energy for diffusion Q and the pre-factor D0 as 
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RG is the gas constant, T the absolute Temperature and Dpipe,i is calculated in a similar 
way as 
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Usually the factor f is expected to range between 0.6 ≤ f ≤ 0.85 [16]. Assuming that the 
cross-section of a dislocation core accommodates about 10 atoms while the matrix 
contains about 1019 atoms m-2 the factor g can be expressed as  

 2
18 m

10
g ⋅

ρ
=  (5) 

where ρ is the dislocation density in m-2.  
 
 

4. Nucleation Model 
 
As a result of slow diffusion kinetics the Mn,Fe- and sometimes Si-containing nuclei are far 
from the equilibrium state. In the normal case theses phases have a non-stoichiometric 
nature where Fe and Mn can substitute each other almost completely. Therefore, the ratio 
of Fe and Mn will be set equal to the ratio of Fe and Mn in the Matrix phase. However, the 
sum of the Fe and Mn must be equal to the actual equilibrium composition of the 
respective phase. 
 
Taking into account to the supersaturation of the alloying elements in the matrix phase 
ci(t)-ci

α and the chemical composition of the nuclei ci
β, it is possible to calculate the 

maximum volume for precipitation for each element i of the phase β  
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where VM represents the molar volume and Vα is the total volume of the matrix phase. The 
maximum number of precipitates for a particular phase can be determined by 
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In a second approach the maximum number of the nuclei sites N0 in equation (10) was 
changed, considering the dislocation nodes as special nucleation sites. The number of 
nodes in the dislocation network is given by [17] 

 5.1
disl,0 2

1N ρ⋅=  (8) 

To make sure, not to precipitate more than the excess elements in supersaturated 
solution, the average value of both methods (volume and dislocation nodes) was used. 
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The changes in the nucleation model will only affect nucleation at the beginning of the 
precipitation process in conditions with rather high dislocation densities and moderate 
temperatures (e.g. after cold-rolling) [18]. The resulting nucleation sites at dislocation 
nodes may be more frequent than the expected number of nuclei. Therefore, the boundary 
condition N0 ≤ N0,vol has to be satisfied. 
 
Now, the nucleation rate per second can be calculated according to Becker and Döring 
[19]. 
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The factor fhet is a scaling factor for heterogeneous nucleation. The Zeldovich factor Z is a 
normalization variable that describes the dissolution of nuclei [20] and β is the rate at 
which solute atoms join the critical radius [14]. ∆G(rc) is the Gibbs energy for a spherical 
nucleus with the size of the critical radius rc an kB the Boltzmann constant. 
 
The accelerated diffusion coefficient for pipe diffusion will affect the nucleation rate by both 
the maximum number of nuclei and the factor β, that describes the rate at which solute 
atoms join the critical radius as well as the incubation time for nucleation. The influence to 
the work of nucleation ∆G(rc) is not considered in the current version. 
 
By setting of the nuclei the total volume above the critical radius will be calculated to 
change the overall composition of the dipersoids of the respective phase. 
 
 

5. Nucleus Growth Model 
 
To consider the concentration profile next to a particle the nucleus growth law was 
expanded with a simple geometric model proposed by Zener [21]. 
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Figure 2: Geometrical derivation of the diffusion length ∆x. [17]. 

 
If the concentration profile is simplified to that show in Figure 2 the resulting growth law for 
each alloying element of a single particle in an infinite matrix will be written as 
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and the resulting growth rate v is given by the sum of the growth rates vi of each alloying 
element. This enables the consideration of  concurrent growth by one element (e.g. Mn) 
and dissolution by the other element (e.g. Fe). To reduce the calculation time trace 
elements were neglected. 
 

 



  1120 

6. Phase Composition Model 
 
The phase composition model was added to describe the non-monotectic phase 
transformation from the β-Al6(Mn,Fe) to the α-Al15(Mn,Fe)3Si2 constituent phases and to 
describe the evolution of the composition of non-equilibrium dispersoids. As a result of 
realistic non-isothermal time-temperature treatment during homogenization of an as-cast 
ingot, the precipitating phases will change their composition as well as their equilibrium 
composition with time. Because there are also stoichiometric phases e.g. Mg2Si, the phase 
composition model can be turned on for each phase separately. 
 
Assuming instant diffusion of the alloying elements in the precipitates the precipitated 
amount ∆ni per unit of time ∆t for each alloying element in a particular phase can be 
expressed according to Fick's 1st law as 

 
β⋅

∆
∆
⋅−=

∆
∆

M

i
i,acc

i

V
A

x
cD

t
n  (12) 

where A is the surface of the precipitate and ∆ci/∆x represents the diffusion gradient. 
 
Since it is assumed that the driving force is given by the thermodynamic equilibrium at the 
particle/matrix interface, ∆ci can be expressed in terms of the time dependent matrix 
concentration ci

α(t) and the Gibbs-Thomson concentration ci
α(r) at the particle/matrix 

interface. 

  (13) )r(c)t(cc iii
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The diffusion length ∆x is given by the geometric model in Figure 2. 
 
 

7. Results and Discussion 
 
The model was applied to simulate the precipitation kinetics of an AA3104 alloy with 
realistic time-temperature treatment during pre-heating. Constituent phases were 
considered to exist when the pre-heating treatment started. Other parameters, like 
diffusion data, were imported from literature [22]. The interface energies of the main 
precipitating phases were derived to 0.3 Jm-2 for the β-Al6(Mn,Fe) phase and 0.2 Jm-2 for 
the α-Al15(Mn,Fe)3Si2 phase from comparison with simulations of model alloys.  
 

0 5 10 15 20 25
0

100

200

300

400

500

600

700

1.5

2.0

2.5

3.0

3.5

4.0

Te
m

pe
ra

tu
re

 [°
C

]

Time [h]

 Temperature [°C]

 Center
 Edge
 Simulation

 R
es

id
ua

l R
es

is
tiv

ity
 a

t 4
.2

K
 [µ

Ω
cm

]

 

 
Figure 3: Comparison of the measured and the simulated residual resistivity at 4.2 K. 

 
The fastest way to validate the simulation results is to compare the experimental and the 
simulated residual resitivities at 4.2 K which is mainly given by the solute level. The first 
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peak in Figure 3 is due to the dissolution of Mg2Si. After 3 h the β-Al6(Mn,Fe) phase will 
form nuclei and due to the decreasing Mn and Fe solutes the residual resistivity will 
decrease, rapidly. 
 
By concomitant ripening and dissolution of the precipitating phases at elevated 
temperatures the mean diameter of the dispersoids will grow, while the solute 
concentrations of Fe and Mn and the resulting residual resitivity will increase again. The 
constituent phases mainly change their shape. During this process both phases change 
their composition [1]. 
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Figure 4: Simulation of Dispersoids Figure 5: Simulation of Constituents 

 
Figure 4 shows a good prediction of the evolution of the mean diameter of the dispersoids. 
However, due to the low dissolution at elevated temperatures the growth rate at the end of 
the process won't be reached. 
 
By contrast the diameter of the constituent phases (Figure 5) remains virtually unchanged.  
Because of the significant effect to the precipitation kinetics of the dispersoids, the 
compositional changes of the constituent phases have to be considered. 
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