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Abstract  
 

It is becoming increasingly important to have physically based predictive models for 
mechanical properties such as yield stress and work hardening behaviour.   In this work, a 
yield stress model for heat treatments after the solution treatment has been developed in 
the internal state variable framework.  The yield strength response is determined from the 
key microstructural parameters, i.e. the volume fraction and size of the strengthening 
phase. The work hardening behaviour as a function of the precipitate state has been 
considered in terms of the dislocation/precipitate interactions (i.e. whether the precipitates 
are shearable or not) and the appropriate flow stress superposition law for dislocation and 
precipitation hardening.   

 
 

1. Introduction 
 

There has recently been a resurgence of interest in examining 6000 series aluminum 
alloys for automotive and aerospace applications.  Over the past several years, significant 
progress has been made in understanding the precipitation sequence and the effect of 
multi-step heat treatment on age hardening response. For example, detailed precipitation 
strengthening models have been developed [1-3] for the automotive alloy AA6111, and a 
careful consideration of the change in work hardening behaviour for different precipitate 
states [4] has been determined.  The current work attempts to combine the models for 
precipitation strengthening and work hardening to produce a comprehensive model which 
describes the stress-strain behaviour up to the necking point for a variety of underaged, 
peak aged and overaged conditions in AA6111.  This is of value from a number of 
perspectives including i) the potential use of the model as an input to finite elements 
models which are used to simulate metal forming or crash worthiness or ii) as a tool to aid 
alloy development. 
 
The approach taken in the work follows the internal state variable framework where the 
key microstructural parameters, i.e. the precipitate size, volume fraction and size 
distribution, are explicitly used as input parameters.  Work hardening is understood in 
terms of the competition between dislocation storage and dynamic recovery and how this 
balance is affected by the precipitate population. Finally, careful attention is paid to the 
question of how the various flow stress contributions should be summed to give the overall 
mechanical response. 
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2. Model Development 
 

2.1 Yield Stress Model 
 
The yield stress for a precipitation hardening alloy can be described by a summation of the 
intrinsic strengthening (i.e. lattice resistance and grain size strengthening), the solid 
solution contribution and the precipitation hardening contribution, i.e. 
  pptsso σσσσ ++=  (1) 
 
The solid solution and precipitation hardening components are fundamentally linked by a 
mass balance of the alloying additions and are, thus, interdependent.  The precipitation 
hardening contribution is a function of the average strength of precipitates as obstacles to 
dislocation motion, F , and the spacing between these obstacles, L ,  and is given by:  

 bL
FM

ppt =σ  (2) 

 
where M is the Taylor factor (3.06) and b  is the magnitude of the Burgers vector (i.e. 
0.286 nm for Al).  In the case of AA6111, careful TEM examination has revealed that 

Q′′′  and β  precipitates coexist in various ratios during ageing at temperatures between 180 
and 250 oC(see ref. [1,2]).  In this work, the simplifying assumption will be made that the 
two precipitates can be treated as a single precipitation population.  Further, since these 
precipitates form needles or laths parallel to the <100> direction, the average spacing on 
the (111) glide plane, L , can be determined as: 

  R
f

L
21
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=

π
 (3) 

 
where R  is the average equivalent radius and f  is the total volume fraction of precipitates 
[1, 3].  The average obstacle strength is determined using the result of Deschamps and 
Brechet [5] which  assumes: i) a linear dependency of precipitate strength on size for 
shearable precipitates; ii) a size independent strength for non-shearable precipitates and; 
iii) a Gaussian distribution of precipitate sizes.  The result for average obstacle strength is 
then: 
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where  cR  is the critical radius for the transition from dislocation shearing to dislocation by-
passing,  ∆  is the standard deviation of the precipitate radius distribution, G  is the shear 
modulus of aluminum (27 GPa)  and where  k  and K  are given by:  

  
cR
bk =   and ( )( )∆+∆

=
/1

2
Rerf

K
π     (4b) 

 
Substituting equations (3) and (4) into equation (2) allows for a prediction of the precipitate 
strengthening contribution.  The values for f , R  and ∆  have been determined for a wide 
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range of ageing conditions (see Table 1) in a previous study using quantitative 
transmission electron microscopy. This leaves only a single unknown variable in the 
precipitation hardening model, the shearable/non-shearable transition radius.  In this work, 
a good fit to the data was found with 6.2=cR nm.  Finally, the solid solution contribution to 
strengthening, ssσ , is estimated as: 

  
3

2

1 









−=

eq
ssoss f

fασσ  (5) 

where ssoσ  is  the solid solution contribution for the  solution treated material , eqf  is the 
equilibrium volume fraction of the precipitating phase (i.e. 0.019) and α  is constant.  The 
overall model results are rather insensitive to the value of α  and this was chosen to be 1, 
i.e. when eqff = , 0=ssσ  

 
Table 1: Summary of data from quantitative TEM characterizing precipitate equivalent radius, volume 
fraction and size distribution [1,2].  Notes: i)  R/∆ is the ratio of the standard deviation of the size distribution 
to the mean radius and ii) the values marked with asteric are estimates. 

Ageing Condition 
volume fraction 
( Q′′′  and β ) 

mean equivalent  
radius / nm R/∆  

0.25 h @ 180 oC 0.002 1.2 0.3 

0.5  h @ 180 oC 0.0036 1.2 0.2 

1 h @ 180 oC 0.0063 1.4 0.2 

7 h @ 180 oC 0.0072 1.8 0.2 

60 days @ 180 oC 0.0072* 2.5-3.0 0.2 

0.5 h @  250 oC 0.012 4.5 0.3 

7 days  @ 250 oC 0.018* 9.5* - 

 
2.2 Work Hardening Model 
 
The work hardening behaviour of a precipitation hardening alloy is a function of two main 
factors, i.e. i) the modification of dislocation storage by precipitates and ii) the appropriate 
superposition law for adding precipitate and dislocation contributions to the flow stress.  
The evolution of dislocation density with strain can be written in the Kocks/Mecking/Estrin 
framework [6,7] as: 

 )( 21
2

1

DP kkk +−=
∂
∂ ρρ
ε
ρ  (6) 

where ρ  is the dislocation density, pε is the plastic strain, 1k  is related to the storage of 
dislocation vis dislocation/dislocation interactions, 2k is the rate of dynamic recovery and 

Dk is an additional storage term due to dislocation/precipitate interactions.  The flow stress 
contribution from dislocation hardening is given by: 
  2

1
ρα=σ ⊥⊥ GbM  (7) 

where ⊥α is a constant of magnitude 0.3. 
 
2.3 Shearable Precipitates 
 
In the case of shearable precipitates, Dk is zero.  As a result, the dislocation contribution to 
flow stress as a function of strain can be determined by integrating equation (6) and 
substituting into (7).  This gives the well known Voce equation, i.e. 
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where s⊥σ is the saturation stress and o⊥θ is the initial work hardening rate.  These two 
parameters can be related to 1k  and 2k as: 

  
2

1GbMk
o
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θ  (9a) 

and 
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GbMk

s
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α

σ  (9b) 

The values for 1k  and 2k  were determined by fitting the Voce equation to the plastic 
behaviour of the solution treated material.  This gave values of -18

1 m 105.7 ×=k  and 
272 =k . In subsequent calculations, the rate of dynamic recovery is assumed to be 

independent of the precipitate population for both shearable and non-shearable 
precipitates. 
 
The flow stress addition problem has been treated using a generalized addition law, i.e. 

  ( )nn
ppt

n
ss

1

σ+σ+σ=σ ⊥  (10) 
when n is variable between 1 and 2.  The physical basis of this approach relates to the 
relative density and strength of the different obstacles.  For example, when the precipitates 
are weak obstacles (or alternatively small in radius) and they are summed with strong 
obstacles such as forest dislocations, the simulations of Foreman and Makin suggest one 
should sum the flow stress contributions, i.e.  1=n .  On the other hand, for the case when 
the precipitates are strong (non-shearable), the density of obstacles (precipitates and 
forest dislocations) should add in linear manner, i.e. 2=n .  In this work, an empirical 
approach has been taken by assuming that n  varies linearly with the precipitate radius (or 
alternatively precipitate strength) from the smallest precipitate radius that was 
experimentally measured to the transition radius, i.e. 
 
  Rn 72.013.0 +=  (11) 
Equation (11) is valid for R between 1.2 and 2.6 nm. For R >2.6 nm, it is assumed that 

2=n . 
 
2.4 Non-Shearable Precipitates 
 
In this case, it is assumed that the storage of dislocations in dominated by non-shearable 
precipitates such that in equation (6) 01 =k  and Dk  describes the storage of dislocations 
due to precipitates [4].  The integration of equation (6) and substitution into equation (7) 
yields: 

  ( )( )
2

1

2
2
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where the  value of  Dk  is geometrically related to the precipitate spacing as follows: 

  
bL
Mk DD α=   (13) 

Dα is a constant and the precipitate spacing L  is given by equation (3).  In reference [4], a 
good fit to data was found when Dα = 0.3 so that will be used here.  Finally, since by 
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definition cRR > , a value of 2 is used for n  in equation (8) when the final flow stress is 
calculated.  
 
2.5 Prediction of Uniform Elongation 
 
Having developed a work hardening model, it is now possible to also predict the extent of 
uniform elongation using the Considére criterion, i.e. 

  
ε
σσ
d
d

=   (14) 

In the present case, the derivative
ε
σ
d
d

, was determined by numerically differentiating the 

calculated stress-strain curve.  Finally, given the magnitude of the uniform elongation, it 
would be straightforward to calculate the ultimate tensile stress if desired. 

 
 

3. Results and Discussion  
 

Figure 1 and 2 compare the results for the experimental and model predictions for stress-
strain curves for the underaged and overaged samples, respectively.  It can be observed 
that there is good agreement for both the yield stress and the work hardening behaviour 
for all cases.  Figure 3 summarizes the comparison of model results and experimental 
results for yield stress and uniform elongation. It can be observed that over a wide range 
of conditions, the yield stress predictions are within ± 5 % of the experimental values while 
the predictions for uniform elongation also fall within this range with the exception of the 
two values for highly overaged samples with non-shearable precipitates where the 
deviation is slightly larger.  
 
The advantage of the current approach is the physical basis of the model and the 
minimum number of adjustable parameters.  The average radius, R , the volume fraction, 
f , and width of the size distribution, ∆ , have been directly measured.  The values for  
1k and  2k have a physical basis and are determined from work hardening behaviour of the 

solution treated sample.  After the transition to non-shearable precipitates, the value of Dk  
is determined from the average precipitate spacing.  The critical adjustable parameter is 
the transition radius, cR , which once determined should be applicable to all alloys with 
similar precipitates. The weakest aspect of the model is the flow stress addition law where 
an empirical relation has been used, i.e. equations (8) and (9).  This is an area which, in 
general, requires further investigation. 
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Figure 1: Comparison of experimental and model  
true stress vs. true plastic strain curves for underaged  
samples. 

 

Figure 2: Comparison of experimental and model 
true stress vs. true plastic strain curves for 
overaged samples.  Note:  the samples aged for 
0.5 hours and 7 days at 250 C are assumed to 
have non-shearable precipitates (see text). 
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Figure 3: Comparison of model predictions with experimental measurements of a) yield stress and b) 

uniform elongation. Dashed lines represent ± 5 % deviation.  Closed symbols and open symbols 
are for shearable and non-shearable precipitates, respectively. 

 
 

4. Summary 
 

A comprehensive model framework has been presented to describe the yield stress and 
work hardening behaviour for an industrially relevant aluminum alloy.  Good agreement is 
observed between the model and experiments over a wide range of ageing conditions.  
The physical basis of the model offers the potential that the model can be expanded to a 
variety of alloys with different chemistries but where the strengthening precipitates are the 
same.  This suggests the potential of the model for aiding alloy development. 
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