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ABSTRACT 

 

Dispersoids play a significant role in the recrystallization and texture development for wrought 

Al-Mg-Si (6xxx series) alloys by inhibiting grain boundary motion. It is therefore important to understand 

the precipitation kinetics of such particles. It is the additions of Mn and Cr in Al-Mg-Si based systems that 

can lead to dispersoid phases being formed. These phases are currently thought to nucleate on β’-Mg2Si via 

an intermediate semi-coherent precipitate. Scanning transmission electron microscopy (STEM) has been 

conducted to study the precipitation of α-Al(CrFe)Si and α’-AlCrSi dispersoids. Corresponding electron 

dispersive spectroscopy (EDS) has been used to distinguish the dispersoids. The volume fraction and size 

distribution of dispersoids has been measured as a function of distance across a grain. Electron probe 

microanalysis (EPMA) has been conducted to study the inhomogeneity of elements in the cast structure 

and the effect on dispersoid precipitation. Dispersoid free regions have been observed in the microstructure 

correlating to regions depleted in the dispersoid forming elements. 
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INTRODUCTION 

 

Al-Mg-Si (6xxx series) based alloys are increasingly being used in the automotive industry. The 

primary reason is to reduce the weight of vehicles, resulting in a reduction of CO2 emissions and increased 

fuel efficiency. The demand for 6xxx series is predicted to increase over the coming decade. Due to the high 

cost and CO2 emissions produced by raw extraction of aluminium, close loop recycling of these alloys 

becomes a more important process. However recycling of automotive alloys can be difficult due to pick up of 

impurity elements such as Mn, Cr and Fe. The addition of these elements can form dispersoid particles during 

early heat treatment processes. Although a controlled population of dispersoids is necessary to control the 

grain structure during thermo-mechanical processing, a significant change to the dispersoid population due to 

a composition change could profoundly influence the final microstructure, affecting the final properties of the 

material. More research is required on the precipitation and effect of additional minor alloying elements; in 

order to increase the 6xxx series alloys recyclability.  

 

Three different types of dispersoids have been identified in 6xxx alloys when Cr and Mn are present. 

These include the α-Al(CrMnFe)Si, α’-AlCrSi and θ-AlCr phases (Robinson, 1994; Buchanan, Ribis, Garnier 

& Colas, 2016; Lodgaard & Ryum, 2000; Strobel, Sweet, Easton & Nie, 2010). Robinson (1994) reported 

that the α’- Al13Cr4Si4 has a face centered cubic (FCC) structure, while the θ - Al7Cr has a monoclinic 

structure (Buchanan et al., 2016). Lodgaard and Ryum (2000b) found that when a high ratio of (Mn,Cr):Fe is 

present, the α-Al15(MnCrFe)3Si2 phase is observed to adopt a simple cubic (SC) structure. It has also been 

found that a phase change occurs from Al15(MnFe)3Si2 SC to Al12(MnFe)3Si body centered cubic (BCC) with 

increased homogenisation time and temperatures as further Fe diffuses to the dispersoids (Strobel et al., 2010; 

Yoo, Shan, Moon & Maeng, 1999). When Mn or Cr is absent, the dispersoid phase remains α, of a 

composition that omits the missing element. 

 

Lodgaard and Ryum (2000b) studied the precipitation of dispersoids containing Mn, Cr and Mn+Cr. 

They found that Mn and Mn+Cr dispersoids precipitate on a semi coherent phase termed the ‘u-phase’, from 

around 400°C. A number of dispersoids precipitate from each u-phase particle, resulting in a string of 

dispersoids. The u-phase precipitates at approximately 350°C on β`-Mg2Si particles until they are completely 

dissolved. In a separate study, the precipitation of Cr dispersoids was investigated but the precipitation 

sequence was not determined (Lodgaard & Ryum, 2000a). More recent studies have also shown the 

requirement of the β`-Mg2Si as a nucleation site for Mn dispersoids. A number of studies (Farah, Djemmal, 

Guemini & Serradj, 2012; Hu, Ogura, Tezuka, Sato & Liu, 2010) reported that Mn dispersoids had 

precipitated in a string along the <100> Al direction. As this coincided with the traces of the β`-Mg2Si phase, 

Farah et al (2011) suggested the Si contained in the β` phase could act as a preferential nucleation site for the 

dispersoids. Hu et al. showed TEM evidence of Mn dispersoids precipitating directly on the β`-Mg2Si phase. 

In both studies, there was no indication of any other intermediate phase such as the u-phase that the 

dispersoids had precipitated on. 

 

Microprobe measurements to determine the elemental segregation in 6xxx series cast 

microstructures have been conducted (Lodgaard & Ryum, 2000a, 2000c; Hu et al., 2010). Mg and Si were 

found to segregate between the secondary dendrite arms and towards grain boundaries. Cr was relatively 

uniformly distributed but indicated segregation towards the dendrite centres. As the solid solubility of Fe in 

aluminium is low (<0.05wt%), its concentration was below the resolution of the microprobe measurements 

for these studies (Lodgaard & Ryum, 2000a, 2000b). However the segregation profile of Fe has been 

demonstrated through Scheil calculations (Samaras & Haidemenopoulos, 2007). Samaras and 

Haidemenopoulos (2007) predicted that Fe segregates between the secondary dendrite arms. In addition, due 

to the slow diffusion of Fe in FCC aluminium, the profile is not expected to change significantly during 

homogenisation. 

 

A number of studies have considered the final distribution of dispersoids (Lodgaard & Ryum, 

2000b, 2000c; Remøe, Marthinsen, Westermann, Pedersen, Røyset & Reiso, 2016). Lodgaard and Ryum 

(2000c) found that the uniformity of Mn, Cr and Mn+Cr dispersoids was dependent on heating rate. With 

quicker heating rates, the dispersoids become less uniform with a higher density towards the edges of the 

 



 

dendrite arms. They revealed that the preferential nucleation sites for the dispersoids are the regions where 

β`-Mg2Si particles form with the highest density. This occurs were the segregation of Mg and Si is highest, 

between the dendrite arms and closer to the grain boundaries. This was in agreement with other recent studies 

on Mn dispersoids (Remøe, Marthinsen, Westermann, Pedersen, Røyset & Reiso, 2016). 

 

In this study, two Al-Mg-Si alloys with high levels of Cr (>0.4wt%) were used in order to study the 

as cast elemental distribution and the effect of grain refiner. In addition, an evaluation of the precipitation 

kinetics of Cr containing dispersoids was also conducted in both alloys. 

 

EXPERIMENTAL 

 

The 6xxx series ingots received were DC-cast by Novelis R&T centre, Sierre, Switzerland and 

measured approximately 220 x 195 x 40 mm. Two alloy compositions were investigated in this paper and are 

given in table 1. Alloy A had 0.12wt% of TiB2 of grain refiner added while alloy B had no grain refiner. 

 

Table 1. 6xxx series alloy compositions investigated (wt%), aluminium balanced 

Alloy Mg Si Fe Cr Ti TiB2 

A 0.63 0.65 0.21 0.41 0.01 0.12 

B 0.64 0.65 0.22 0.46 <0.01 0 

 

The segregation of elements in the cast structure was studied via Electron Probe Micro Analysis 

(EPMA). Measurements were conducted on a JEOL JXA-8530F EPMA equipped with 4 Wave Dispersive 

Spectrometers (WDS) containing TAP, LiF(L), PET(L) and LDE crystals. A step size of 2μm was used for 

the quantitative line scans. Two line scans per sample from two different locations in the ingot were 

conducted. Qualitative maps were taken at 15kV, 43 nA beam current. The dwell time was 30ms per point 

with a field of view of 512μm. It should be noted that the size of the x-ray interaction volume is likely over 

an order of magnitude smaller than the interdendritic spacing. The as-cast samples for EPMA were ground 

down to 2500SiC. Polishing was conducted at 3μm grit with a final OP-S polish performed for 30 seconds. 

For TEM analysis, 10x10x10mm as-cast samples were heated at a rate of 50°C/hour from room temperature 

to 450°C and 550°C. At 450°C the samples were quickly water quenched. After heating to 550°C, the sample 

was held for 10 hours before the water quench in order to represent a typical industrial homogenisation 

regime. An air circulating furnace with temperature control within ±5°C was used. The samples were ground 

to a 100μm thickness with the final thinning achieved using a Struers Tenupol electropolisher. The electrolyte 

was a solution of 90:10 Methanol:Perchloric acid conducted at -35°C, 21V. STEM imaging was performed 

on a FEI Talos F200A microscope equipped with Super-X EDXS detectors. To study the dispersoid 

distribution, an additional sample was heated at 50°C/hour to 550°C and held for 20 hours before a water 

quench. This sample was prepared similar to the cast EPMA samples and etched using a 20% sulphuric acid 

solution at 70°C for 2 minutes in order to highlight the dispersoid distribution using a Keyence optical 

microscope. 

 

RESULTS AND DISCUSSION 

 

Elemental distribution 

 

Figures 1 and 2 show qualitative elemental maps and quantitative line scans of the cast structures 

for alloy A and B respectively. As can be seen from the secondary electron micrographs and corresponding 

elemental maps in Figures 1(a) and 2(a), alloy A has an equiaxed grain structure whereas alloy B has a 

larger more columnar structure. This is to be expected as alloy A has the addition of TiB2 grain refiner. The 

grain refiner has not changed the sense of segregation (i.e. the elements segregate in the same direction in 

both alloys A and B with respect to the dendrite centres) but the scale over which segregation occurs is 

clearly different due to the refinement of alloy A. 

 

As can be seen from the both the maps and line scans, the Mg and Si segregates away from the 

centre of the dendrite arms for both alloys. There is a much lower level of Si in solid solution as a large 

 



 

proportion of Si is contained in the larger grain boundary eutectic particles in both alloys (indicated by ‘GB 

particle’ in Figures 1(b), 1(c) and 2(c)). The Mg and Si distribution is in agreement with other similar 

microprobe studies on Al-Mg-Si alloys (Lodgaard & Ryum, 2000a, 2000b, 2000c; Hu et al., 2010). 

Thermodynamic simulations were also conducted on JMatPro predicting the weight% element in Al 

against fraction solid using the Scheil-Gulliver assumption. In this assumption, no back-diffusion is 

allowed in the solid, and the prediction of the reactions towards the end of solidification must be treated 

with caution. Nevertheless, the predicted segregation direction with respect to the fraction solid is 

consistent with the measured segregation direction with respect to the position within a dendrite (assuming 

the fraction solid correlates directly with position in the dendrite from center to edge). For example, the 

simulations shown in Figure 3(a) indicate a similar segregation for Mg and Si with the current study. Fe 

has a very low solubility limit in Al (<0.05wt%), however there is indication of segregation away from the 

dendrite centres. This can be seen in Figures 1(a) and 2(a) for both alloy A and B respectively. In addition, 

the line scans for both alloys show a small increase in Fe in the vicinity of the grain boundary particles (or 

towards the dendrite centre in Figure 2(a)). The majority of Fe is located in the eutectic particles located on 

the grain boundaries, as shown in the qualitative maps for alloys A and B. The segregation profile agrees 

with the thermodynamic simulation in Figure 3(b) in addition to other simulated results in literature 

(Samaras & Haidemenopoulos, 2007). The spikes in concentration of some elements towards the end of 

solidification correspond to invariant reactions forming the primary intermetallic particles. 

 

 

 

Figure 1. (a) EPMA qualitative map showing the distribution of elements in the as cast structure, (b) 

quantitative line scan indicated by the red line, and (c) additional quantitative line scan located in a 

different region on the sample 

 

 



 

 

 

Figure 2. (a) EPMA qualitative map showing the distribution of elements in the as cast structure, (b) 

quantitative line scan indicated by the red line, and (c) additional quantitative line scan located in a 

different region on the sample 

 

 
 

Figure 3. Thermodynamic simulations conducted on JMatPro displaying the atomic weight % element in 

Al against fraction solid for (a) Mg, Si and (b) Cr, Fe in alloy A 

 

Cr is found to segregate towards the dendrite centre in both alloys, which is predicted in the 

thermodynamic simulation displayed in Figure 3(b). However, within the dendrite centres, the Cr is 

relatively uniformly distributed in both alloy A and B, in agreement with other studies (Lodgaard & Ryum, 

2000a, 2000c). The quantitative line scans in Figures 1(b), 1(c) and 2(c) show a gradual depletion of Cr 

 



 

adjacent to the grain boundary particles (indicated by ‘GB particle’ in Figures 1(b), (c) and 2(c)). This is as 

expected as some Cr diffuses during solidification to form the coarse grain boundary constituent phase α-

AlFeCrSi. However, as can be seen from the qualitative maps in Figures 1(a) and 2(a), both alloys show 

other regions of significantly lower Cr in the vicinity of grain boundaries where no eutectic is present, and 

between grain boundary eutectic particles. These regions are presented more clearly in Figure 4, which 

displays a magnified Cr map for alloy A. These large (up to 30 m diameter) pockets that are strongly 

depleted in Cr correspond to the final Cr depleted liquid to solidify. It can be seen that these regions occur 

between regions of grain boundary where the eutectic intermetallic is formed. It should be noted that the 

partitioning behavior of Cr during solidification may be strongly affected by alloying additions and the 

invariant reaction in the binary Al-Cr system is only marginally peritectic, and so the segregation behavior 

can be significantly influenced by minor additions (Kurtuldu, Jessner & Rappaz, 2015). The focus of this 

study was understanding how the segregated cast structure influences the final dispersoids distribution, so 

the origins of the low Cr pockets were not explored in further detail. 

 

 

Figure 4. A magnified EPMA qualitative map for Cr in alloy A, indicating the regions with significantly 

lower Cr 

 

In order to show how the low Cr regions affect the dispersoid distribution, an additional alloy A 

sample was heated to 550°C and held for 20 hours. Figure 5(a) shows an optical micrograph of the general 

dispersoid distribution in this sample. Indicated in Figure 5(a) are clear regions were no dispersoids have 

formed. Figure 5(b) shows a STEM micrograph of an example region that is completely free of dispersoids 

adjacent to a grain boundary. These regions coincide with the low Cr regions between the grain boundary 

eutectic. The dispersoid free regions will affect further thermo mechanical processing of the alloy due to 

the dispersoids playing a significant role in recrystallisation.  

 

 
 

Figure 5. (a) An optical micrograph showing the dispersoid distribution after heating to 550°C and holding 

for 20 hours in alloy A. (b) A STEM bright field micrograph showing a region with no dispersoids adjacent 

to a grain boundary under the same heat treatment conditions 

 

 



 

Precipitation of Dispersoids 

 

 Figure 6 shows bright field STEM micrographs of the general morphologies of dispersoids after 

continuous heating to 550°C and holding for 10 hours in alloy A. As can be seen from Figure 6(a) and (b), 

there are varied morphologies including spherical, rectangular, hexagonal and rod like dispersoids. Similar 

morphologies were also found in alloy B. Figure 6(a) shows the dispersoids 0–5 μm away from the grain 

boundary with a eutectic particle several microns in length on the left of the image. Figure 6(b) is 30–35 

μm away from the same grain boundary. 

 

 
 

Figure 6. STEM HAADF micrographs of dispersoids after a 10 h homogenisation at 550°C in alloy A. 

Micrograph (a) is 0–5 μm and (b) 30-35 μm away from the grain boundary respectively 

 

A number of micrographs were taken consecutively in a line from the grain boundary (located at 0 

μm in Figure 7) towards the grain centre (35–40 μm in Figure 7) and analysed using ImageJ. 1540 

dispersoids were studied in total over 8 micrographs. Figure 7 shows the effective diameter and area 

fraction as a function of distance away from the grain boundary with the corresponding example STEM 

micrographs that were analysed. The dispersoids studied consisted of two types, the α-Al(CrFe)Si and α’-

AlCrSi dispersoids. The analysis shown in Figure 7 did not distinguish between these two types. From 0–5 

μm, there is a lower area fraction of dispersoids compared to between 5–30 μm. This is due to the inclusion 

of the precipitate free zone which can be seen on the corresponding micrograph for 0–5 μm in Figure 7. 

From 5–10 μm there are a larger number of smaller dispersoids indicated by the increase in area fraction 

but decrease in size. From 10–40 μm the area fraction and size of dispersoids steadily decreases towards 

the grain centre. The overall decrease of dispersoids towards the grain centre is similar to other studies on 

Mn, Cr and Mn+Cr dispersoids (Lodgaard & Ryum, 2000b, 2000c).  

 

The decrease in dispersoids towards the grain centre could be attributed to the segregation of Mg 

and Si in the cast alloy, as shown in Figures 1 and 2. Other studies have shown for Mn and Mn+Cr 

dispersoid systems, that the dispersoids precipitate at lower temperatures on Mg and Si containing particles 

(ref). In these systems, the segregation of Mg and Si results in an increase in density of β’ particles towards 

the grain boundary. This results in a higher density of dispersoids towards the grain boundary during 

heating. This observation emphasizes the complexity of the influence of the segregation in the cast 

structure on dispersoids precipitation, since it is not only the distribution of the dispersoid forming 

elements (e.g. Mn and Cr) that is important, but also the segregation of the major alloying additions that 

form the pre-cursor phases (Mg + Si). Dispersoids will only form in regions where there is sufficient Cr, 

but once this critical concentration is exceeded, the local Mg and Si concentrations become important by 

controlling the potential to precipitate the pre-cursor phases. The optimum conditions to precipitate the 

maximum fraction of dispersoids require both sufficient Cr and sufficient Mg and Si. Since the local Cr 

concentration is low towards the dendrite edges, and the local Mg and Si are low towards the centers, this 

optimum condition corresponds to positions between these extremes. 

 



 

 

Figure 7. The average effective diameter and area fraction of dispersoids studied from the grain boundary 

(located at 0 μm) towards the grain centre (located at 40 μm) 

 

Figure 8 shows dispersoids after a 10 hour homogenisation heat treatment at 550°C with 

corresponding EDS maps. Figure 8 shows the existence of two types of dispersoids, the α-Al(FeCr)Si and 

α’-AlCrSi dispersoids distinguished by the presence of Fe in the α dispersoids as indicated in the Cr and Fe 

maps. 13 of each type of dispersoid have been studied in alloy A. Table 2 shows the effective diameter, 

aspect ratio and form factor for both types of dispersoid present. Aspect ratio and form factor were chosen 

to represent the dispersoid morphology, as they are dependent on two different particle attributes, 

elongation and ruggedness respectively (Hentschel & Page, 2003). Both dispersoid types have a variation 

in morphology as indicated by the aspect ratio and form factor, however the α’-AlCrSi are larger than the 

α-Al(FeCr)Si dispersoids. Similar morphologies of dispersoids have been previously found for both α-

Al(FeCr)Si and α’-AlCrSi (Buchanan et al., 2016; Lodgaard & Ryum, 2000a) under different heat 

treatment and processing conditions. 

 

 
 

Figure 8. STEM HAADF micrograph with corresponding EDS maps after a 10 hour homogenisation heat 

treatment at 550°C 

 

 



 

Table 2. The effective diameter, aspect ratio and form factor for the two types of dispersoids present after 

continuous heating to 550°C and holding for 10 hours 

Dispersoid Effective diameter (nm) Aspect ratio Form factor 

α-Al(FeCr)Si 74 ± 20 1.58 ± 0.35 0.72 ± 0.09 

α’-AlCrSi 162 ± 28 2.09 ± 1.49  0.60 ± 0.10 

 

Figure 9 displays only α dispersoids distributed in alloy B after continuous heating to 450°C. The 

dispersoids have precipitated in a string in the <100> Al directions as indicated by the selected area 

diffraction pattern (SADP). Similarly to other studies for Mn and Mn+Cr dispersoids at different 

temperatures (Farah et al., 2011; Lodgaard & Ryum, 2000b) the dispersoids follow the alignment of the β`-

Mg2Si particles that had formed at lower temperatures. This suggests that Cr containing dispersoids follow 

a similar precipitation sequence to Mn and Mn+Cr dispersoids. All the dispersoids studied via EDS were of 

the α-Al(FeCr)Si type dispersoid and no evidence of the α’-AlCrSi dispersoid has been found in either 

alloy at this temperature. In both alloys A and B, the dispersoids formed in a manner as shown in Figure 9. 

 

 

Figure 9. STEM HAADF micrograph of dispersoids distributed in lines along the <100> Al directions in 

alloy B after continuous heating to 450°C 

 

CONCLUSIONS 

 

 EPMA qualitative maps and quantitative line scans have been conducted on two as cast Al-Mg-Si 

alloys with a high level of Cr. The dispersoid precipitation was also studied with TEM. A number of 

conclusions can be drawn from the current work. The addition of grain refiner in alloy A changed the grain 

structure and scale of elemental segregation from alloy B that contained no grain refiner. Large regions of 

significantly lower Cr were found in the vicinity of grain boundaries or between grain boundary eutectic in 

both alloys. These depleted areas resulted in dispersoid free regions after homogenisation heat treatment 

and could affect further thermo mechanical processing. Mg, Si and Fe segregated away from the dendrite 

centres in alloys A and B. The area fraction and size of dispersoids decreased from the grain boundary to 

the grain centre. Evidence of the α-Al(FeCr)Si dispersoids forming in a string like manner was also found 

in both alloys. A combination of decreasing density of dispersoids towards the grain centre, and evidence 

of the dispersoids forming in a string like manner, suggests the precipitation and distribution of Cr 

dispersoids is dependent on the segregation of Mg, Si and Cr in the cast structure. The effect of the 

segregation of these elements on the final dispersoids distribution is different, however. A critical local Cr 

level is needed to form any dispersoids and dispersoids free regions correspond to regions where this level 

is not reached. Where the critical Cr level is exceeded, the segregation of Mg and Si become important in 

controlling the nucleation of dispersoids by providing different amounts of precursor phase, thus 

influencing both the size and fraction of dispersoids. The observation that Cr segregates in the opposite 

sense to Mg and Si explains the occurrence of dispersoids free zones towards the dendrite edges (low Cr) 

and dispersoid depleted zones towards dendrite centers (low Mg and Si). 
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