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Neural network is of an important efficiency in the simulations of the mechanical behaviors of 
engineering materials. In this work, a radial basis function neural network is used to the simulation of 
the nonlinearly elastoplastic behavior of casting Aluminium alloy. A radial basis function neural 
network is adopted for that it is of the characteristic of fast and exactly completing the simulations of 
the behaviors of the material. The neural network is trained based on a set of simple experimental data 
of the material. In the training process, a strain-controlled mode and the iterative method of the data 
are employed. The obtained model of the neural network is used to the prediction of the relationship 
between the stress and the strain of A101 and A104 casting Aluminium alloys. It is shown that the 
obtained neural network model can well simulate the nonlinearly elastoplastic behaviors of the 
materials. 
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1. Introduction 
An important content in the investigations of material behaviors is to construct models of the 
materials. True material models can reasonably describe the experimentally observed results of the 
materials and predict their yet untested stress-strain relationships. The general models described the 
relationship between the stress and strain of a material are with mathematical rules and expressions. 
Up to today, most of material models are just effectual and exact in the elastic scope of the materials. 
Namely, the description of the material behaviors is limited in the elastic scope with linear 
characteristic. It is because, in a general way, there is considerable model error in the description of 
the nonlinearly mechanical characteristic of a material [1]. For example, there is a large error in the 
description of the nonlinearly elastoplastic behaviors of many key engineering materials. An 
alternative is to use a neural network to model the nonlinear characteristics of the materials [2]. The 
main benefits using the approach of a neural network are that all material behaviors can be 
represented within a unified environment of the neural network and that the network can be built 
directly from simply experimental data using the self-organizing capabilities of the network. Namely, 
the neural network can be presented with the experimental data of the material and “leans” the 
nonlinear relationships between the stress and the strain of the material. Such a modeling strategy has 
important implications for modeling the behaviors of those materials with nonlinear behavior and 
characteristic.  

The simulations and descriptions of the behaviors of some materials using the techniques of neural 
networks have been reported by some researchers [1-5]. Ghaboussi et al. [1] reported the results of 
their researches in using a back-propagation neural network as a computational tool for capturing the 
behavior of a concrete material. Abendroth and Kuna [2] presented an approach to describe the plastic 
and failure properties of several steel materials with a back-propagation algorithm of a neural 
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4.  Conclusion 
 
When we added 0~3mass%Si to Al-2mass%Mg-2.5ppmBe, the fluidity length decreased. That is, we 
think viscosity of the tip of molten metal increased due to fine crystallization of primary α-Al phase. 

When we added 0~3mass%Si to Al-4mass%Mg-2.5ppmBe, the fluidity length was constant. 
That is, we think behavior of liquidus and solidus had a large influence on the fluidity. 

When we added 0~3mass%Si to Al-6mass%Mg-2.5ppmBe, the fluidity length  increased. That is 
we think a region of between liquidus and solidus lines decreased and close in ternary eutectic point 
of Al-Si-Mg2Si with additive amount of Si increase. 

When we added 0.7mass%Mn to Al-2mass%Mg-2.5ppmBe, fluidity length generally improved 
with additive amount of Si increase compare with additive-free of Mn. That is, we think delay of 
solidification due to crystallization of Al6Mn or Al12Mn3Si is one of the reason which fluidity 
improved. 

When we added Al-2.5ppmBe to 2~6mass%Mg, the rate of internal contraction decreased 
slightly and the rate of external contraction increased. That is we think quantity of produced nuclear 
increased due to an increase in concentration of solute and changed skin-formation type solidification 
to mushy solidification. 
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Fig. 10 Effect of Mg and Si on hydrogen content in 
Al-2.5ppmBe alloy. 

Fig. 11 Effect of Mg and Si on contraction behavior in 
Al-2.5ppmBe alloy. 

Fig. 12 Optical micrographs of central portion in Y-shaped casting 
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network. Furukawa and Hoffman [3] built a new material model using a multi-layer perceptron neural 
network that has the ability to describe the monotone and cyclic plasticities of Cr-Mo steel. Genel et 
al [4] employed the artificial neural network model with a multiple-layer-feed forward characteristic 
for simulating the complex properties of a alumina-fiber-reinforced zinc-Aluminium composite. Liu 
et al [5] acquired the constitutive relationship of thermal viscoplastic materials using a 
back-propagation neural network. In this paper, a radial basis function neural network model is built 
and trained for describing the nonlinearly elastoplastic behavior of casting aluminium alloy materials 
under large elastoplastic deformation. It is shown that the obtained model of the radial basis function 
neural network can well describe the nonlinearly elastoplastic behavior of the casting Aluminium 
alloy materials. 

2. Elastoplastic behavior of casting Aluminium alloy 
Casting Aluminium alloys are attracting increasing attention in transport vehicle field for their 
excellent properties in reducing vehicle weight and to be recycled. For example, casting Aluminium 
alloy A101 and A104 are currently being considered for automotive applications such as engine 
blocks and cylinder heads. The research on the material behaviors of the casting Aluminium alloys is 
very significant to develop new light-alloy materials of transport vehicle with high performances [6, 
7]. In this section, the relationship between the stress and the strain of casting Aluminium alloys is 
investigated with a tensile experiment. The obtained test data will be transferred to a radial basis 
function neural network to obtain the material model of the casting Aluminium alloys. 

In order to experimentally obtain the relationship between the stress-strain of the casting 
Aluminium alloy materials, cylindrical specimens of the materials were fabricated and 
experimentally tested with a Instron material test system. The measurable input is the load applied on 
the specimens and the measurable output is their displacement. The curve of the relationship between 
the load and the displacement provides the main information of the material behavior and can be easy 
transferred into the curve of the relationship between the stress and the strain of the material. Fig. 1 
shows the obtained curve of the relationship between the stress and the strain of casting Aluminium 
alloy A101. It can be found from Fig. 1 that the relationship between the stress and the strain of the 
material is of nonlinearly elastoplastic characteristic and the stress-strain curve can be divided to 
linearly elastic and nonlinearly plastic parties. The dividing line between the elastic and plastic parties 
can be seen in Fig. 1. The nonlinearly elastoplastic behavior of the casting Aluminium alloy can be 
simulated using a neural network model with a radial basis function in the following section. 

3. Simulation of material behavior 

3.1 Extended radial basis function neural network 
Radial basis function (RBF) was originated in 1964 as a potential function [8], but was first used for 

   
    

    

                     

Fig. 2. Radial basis function neural network
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Fig. 1. Stress-strain curve of A101 
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the description of nonlinear regression by Sprecht in 1968 [9]. The neural networks with radial basis 
function (RBFNN) were brought to widespread attention by Moody and Darken [10] in 1989. It has 
been found that the architecture and training algorithm of the RBFNN is relative simple and the 
training of the RBFNN is more quickly than that of the multiple-layered perceptron (MLP) [10, 11]. 
So, in this research, we use an extended radial basis function neural network (ERBFNN) to simulate 
the elastoplastic behavior of the casting Aluminium alloy materials. 

The ERBFNN consists of three layers: input layer, hidden layers and output layer (Fig. 2). The 
input layer has I neurons and anyone of the neurons can be expressed as i. The hidden layer includes 
N neurons, and anyone of the neurons can be expressed with n. The output layer has J neurons and 
anyone of the neurons can be expressed as j. The basis function of the network is ),( iXXφ  which is 
the inspiriting output of the i-th hidden unit. The connection weight between the hidden layer and the 
output layer is  ijw ),...,2,1;,...2,1( JjIi == . In the hidden layer of the network, a basis function )0(φ
is added and its corresponding weight is jw0 . When a training sample kX  of the network is inputted, 
the output of the j-th outputting neuron is 
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where it  is the center of the radial basis function of the network. When the Green Function [10, 11] is 
adopted as the basis function of the network  
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where ],...,,[ 21 iMiii tttt =  is the center of the Gaussian Function and iσ  is the square error of the 
Gaussian Function. The centers of the network and other parameters can be determined by “learning” 
under surveillance. In the “learning” course, an aim function is defined as  
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where N is the number of samples, ke  is error signal and can be expressed as 

∑
=

−−=−=
I

i
Cikikkkkk

i
tXGwdXYde

1
)()( ,                                            (5) 

where kd  is the distance between the selected centers. The weight iw  of the output layer can be 
determined by: 
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and the center it  of the hidden layer can be calculated with  
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The extended parameter ∑
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where )(⋅′G  is the differential coefficient of )(⋅G
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3.2 Training and test of neural network model 
The experimentally obtained curves of the stress-strain relationship of the casting Aluminium alloys 
were used for training the constructed ERBFNN. A stress-controlled training mode was adopted [1]. 
In the training mode, stress increments were presented to the network as input and strain increments 
as output. The network was trained to predict strain increments given the current state of the strain,
stress and stress increment. This is done by starting at a known stress-strain state, increasing small 
stresses and using the ERBFNN to predict the strain increments. These strain increments can then be 
added to get the new strain state which can be used to predict the strain increment for another stress
increment. The predicted result of the curve of the stress-strain of casting Aluminium alloys A101 is 
shown in Fig. 3. It can be found from Fig. 3 that the predicted result is consistent with the 
experimental data, which shows that the ERBFNN can well describe the elastoplastic behavior of the 
material.  

The trained material model of the ERBFNN was also used for predicting the elastoplastic 
behaviors of casting Aluminium alloy A104. The predicted and the experimental results of the 
stress-strain relationship of the material are shown in Fig. 4. It can be seen from Fig. 4 that the 
predicted values of the ERBFNN are also very close to the experimental results of the material, which 
shows that the ERBFNN is of reliable ability for describing the nonlinearly elastoplastic behavior of 
the casting Aluminium alloy materials. 

Fig. 4. Stress-strain curve of A104 Fig. 3. Stress-strain curve of A101 
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4. Conclusions 

The nonlinearly elastoplastic behavior of casting Aluminium alloys was simulated using an extended 
radial basis function neural network. The neural network is of the characteristic of fast and exactly 
completing the simulation of the material behaviors. The neural network was trained by directly using 
the experimental data of the stress-strain relationship of the materials. A stress-controlled mode and a 
data-iterative method were adopted in the training process. The trained neural network model was 
used to the prediction of the elastoplastic behavior of the materials. It is shown that the obtained 
material model of the extended radial basis function neural network can satisfactorily simulate the 
nonlinearly elastoplastic behavior of the materials. 
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