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Hat-shaped draw bending experiments were performed on type AA6016-T4 aluminum sheet with 
strong planar anisotropy. From the comparison of the experimental results of springback with the 
corresponding numerical simulations, the effect of planer anisotropy on springback is discussed. For 
the simulation, Yoshida-Uemori kinematic hardening model (F. Yoshida & T. Uemori, Int. J. 
Plasticity 18, 2002; Int. J. Mech. Sci., 45, 2003) incorporating with several types of anisotropic yield 
functions were employed. From the experiments, it was found that springback of R.D. (rolling 
direction) bending differs from that of T.D. (transverse direction) bending. For accurate simulation of 
such anisotropic behavior of springback, the selection of anisotropic yield function, as well as the 
modeling of the Bauschinger effect, is very important. 
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1. Introduction 
Aluminum alloy sheets have been widely used for lightweight constructions of automobile. For press 
forming of aluminum sheets the prediction of springback by numerical simulation is very important, 
since their springback is extremely large due to their nature of low elastic rigidity. Moreover, some 
aluminum sheets have significant planar anisotropies in r-values and the flow stresses [1-3], and they 
would also influence the springback.

Two of the present authors (Uemori and Yoshida [4]) pointed out that the Bauschinger effect 
should be taken into account for accurate numerical simulation of springback, and for its description, 
they proposed an advance kinematic hardening model (Yoshida-Uemori model [5-7], hereafter we 
call it ‘Y-U model’). This model takes into account the planar anisotropy, by choosing an appropriate 
anisotropic yield function, as well as the Bauschinger effect and cyclic hardening characteristics. 
Although it is already well-known that the Bauschinger effect strongly influences the accuracy of 
springback analysis, there are not so many works on the effect of anisotropies on springback. This is 
because most of the discussions on springback have been on high strength steel sheets which have 
rather weak anisotropy (their r-values are usually 0.8-1.0). 

In the present work, hat-shaped draw bending experiments were performed on type AA6014-T4 
aluminum sheet with strong planar anisotropy. From the comparison of the experimental results of 
springback with the corresponding numerical simulations, the effect of planer anisotropy on 
springback is discussed. Several material tests of uniaxial tension, cyclic tension-compression and 
biaxial stretching were performed to observe anisotropic elasto-plasticity characteristics of the sheet. 
For the simulation, Y-U model incorporating with several types of anisotropic yield functions (Hill48 
[8], Gotoh [9] and Barlat Yld2000-2d [10]) were employed.  

2. Material tests to observe elasto-plasticity characteristics  
Test materials used in this study was type AA6014-T4 sheet of 1.0-mm thick. Uniaxial tension tests 
were carried out using a servo-controlled testing machine (SHIMADZU AG-IS, load capacity is 
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50kN). JIS 13A-type specimen (pararell portion is 20-mm wide and 120-mm long) was used in the 
uniaxial tension test. Stress-strain curves and  r-values were determined by uniaxial tension 
experiments in three directions (0, 45 and 90 degrees from the rolling direction).  

In-plane cyclic tension-compression tests were carried out using the specimen shown in Fig.1 (a).
The specimen was prepared in such a way that six sheets were adhesively bonded together (thus 
thickness of the specimen was 6 mm) in order to prevent buckling under compression loading. By 
using FE simulation, it was confirmed that parallel part uniformly deforms during the cyclic 
deformation. Incremental step-up cyclic straining (strain history: 0 →  +2.5% →  -2.5% →  +5% 
-5%,…) was imposed. Tests were carried out until the rupture or buckling occurs.

→

Biaxial stretching tests were carried out using the cruciform specimen shown in Fig.1 (b). Slits
are fabricated in the arm of the specimen in order to release the deformation constraint on the central 
section. The uniform deformation at the center of the cruciform specimen in equi-biaxial stretching 
was confirmed by FE simulation (von Mises yield criterion and the Swift hardening law). Stresses, σx

= ( ) (/ exp )x x xP A ε and σy= ( ) ( )yyyy AP εσ exp/= , were determined by dividing the measured loads Px

and Py by the cross sectional areas Ax and Ay (Ax= Ay=52×1.0mm2), respectively. The strains, εx and εy,
were measured by strain gauges (Tokyo Sokki Kenkyujo Co., Ltd., YEFCA-2) bonded on the surface 
at the center of the specimen. Initial yield locus and subsequent equi-plastic work loci were obtained. 
From the comparisons between the experimental results and the corresponding finite element 
calculations under several types of bi-axial tensile conditions, it is found that the estimated errors in 
stress are less than 3% in the present bi-axial test piece. ±

3. Constitutive modeling 

3.1 Yield functions 
In order to describe the orthotropic anisotropy of the sheet, the following four types of yield 

functions were employed: 
- von Mises’s isotropic yield function 

( ) ( ) ( )2 2 2 2 2 2 21 3 3 3
2 xx yy yy zz zz xx xy yz zxf Yσ σ σ σ σ σ τ τ τ⎡ ⎤= − + − + − + + + −⎢ ⎥⎣ ⎦

0=  .           (1) 

(a) Cyclic tension-compression test                      (b) Biaxial stretching test 

Fig.1 Schematic illustrations of in-plane specimens (in mm) 
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- Hill48 yield function [8] 
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where F, G, H, L, M, and N stand for Hill’s anisotropic parameters.  

- Gotoh’s bi-quadratic yield function [9] 
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where A1~ A9 are Gotoh’s anisotropic parameters. ijσ and Y stand for the Cauchy stress, the initial 
yield stress, respectively. 
- Barlat’s Yld200-2d yield function [10] 

1 2 2 1 1 22 2 2M M M Mf X X X X X X Y′ ′ ′′ ′′ ′′ ′′= − + + + + − = 0  ,                                             (4) 
:′ ′= σX L , :′′ ′′= σX L   ,                                                            (5) 

where ′X and ′′X stand for the stress tensor, respectively. ′L and ′′L are the Barlat’s anisotropy 
interaction matrix, respectively.  

3.2 Yoshida-Uremori kinematic hardening model 
When the yield function at the initial state, f0, has a general form: 

( ) 0,of Yφ= − =σ                     (6) 

where φ denotes a function of the Cauchy stress σ, and Y is the initial yield strength defined as the 
elastic limit. For function φ, we may choose one among existing anisotropic yield functions (e.g., 
[8-10]). The criterion for the subsequent yield is written by 

( ) ,0, =−= Yf ασφ                      (7)

where α stands for the backstress. The 
associated flow rule is written as 

O

β

σ

α

α*

a

Y

B+R

A

Yield surface

Bounding surface

Fig.2 Two-surface model 

,p f φλ λ∂ ∂
= =
∂ ∂σ σ

D  (8) 

where D
p
 denotes the plastic part of the rate 

of deformation. Thus the constitutive 
equation of plasticity is derived by 
determining the evolution equation of the 
backstress α, together with an appropriate 
choice of an anisotropic yield function. 

As for the kinematic hardening law, Y-U 
model is constructed in the framework of 
two-surface modeling, wherein the yield 
surface moves kinematically within the 
bounding surface, as schematically 
illustrated in Fig.2 The bounding surface F is 
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expressed by the equation:          

( ) ( ) ,0, =+−= RBF βσφ   (9) 

where β denotes the center of the bounding surface, and B and R are its initial size and isotropic 
hardening (IH) component. The relative kinematic motion of the yield surface with respect to the 
bounding surface is expressed by 

* .= −α α β                                                (10) 
For the evolution of α , the following equation is assumed: *

( )
*

,a aC p
Y α

⎡ ⎤⎛ ⎞= − −⎢ ⎥⎜ ⎟
⎝ ⎠⎣

∗ ∗α σ α α
⎦

                                      (11)

( )*3
2 : , ,p pp a B R Yα φ= = = + −αD D                                                         (12)

g. For the isotropic hardening of the 
bounding surface, the fol

For the kinematic hardening of the 
bounding surface, the following evolution equation is assum

∗

where p is the effective plastic strain rate, defined as the second invariant of D
p
, and C and a are 

material parameters that control the rate of the kinematic hardenin
lowing evolution equation is assumed: 

( ) ,pRRmR sat −= (13) 

where Rsat is the saturated value of the isotropic hardening stress R at infinitely large strain, and m is a 
material parameter that controls the rate of isotropic hardening. 

ed: 

( ) ,p
Y ⎥

⎦
⎢
⎣ ⎠⎝

where b denotes a material parameter. Here, parameter m is assumed to be the same as in the 
evolution equation of the isotropic hardening stress. To describe the phenomenon of workhardening
stagnation appearing in a

bm ⎤⎡
−−⎟

⎞
⎜
⎛= βασβ (14)

 model of plastic-strain dependent Young’s 
modulus (Yoshida et al. [5]) was used i

 reverse deformation, the model of non-IH hardening surface is introduced 
(refer to papers [6, 7]).   

Besides the kinematic hardening model, the following
n the calculation: 

( ) ( ){ }0 0 1 expaE E E E ξε= − − − −                                                                  (15) 

where E0 and Ea stand for Young’s modu

p

lus for virgin and infinitely large pre-strained materials, 
respectively, and ξ is a material constant.  

in responses 
by Y-U model incorporating with Gotoh’s yield function. This model can describe the

4. Material behavior and its modeling 

The sheet has significant planar anisotropy (r0 = 0.76, r45 = 0.26, r90 = 0.61), which cannot be 
described by von Mises (isotropic) yield function. Fig.4 shows the initial yield loci calculated by the 
above mentioned several types of yield functions, together with the corresponding experimental data. 
Quadratic yield functions of von Mises and Hill48 fail in describing the anisotropic yield locus of the 
sheet, while the calculated results by higher-order yield functions proposed by Gotoh and Barlat agree 
well with the experimental data. Especially, Gotoh’s yield function shows the best fit with the 
experimental data in any stress conditions. Fig.5 depicts the calculated cyclic stress stra
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complicated stress strain responses with the Bauschinger effect and the cyclic hardening 
characteristics.

Fig.3 Yield loci calculated by the four 
types of yield functions 

Fig.4 Cyclic stress-strain responses 
calculated by Yoshida-Uemori model 

5. FE simulation of springback in hat-shaped draw bending 
In the present research, springback in hat-shaped draw bending was investigated. The experimental 
set-up is illustrated in Fig.5 Bending experiments were conducted for two directions, R.D. and T.D., 
of the sheet. Finite element simulations were carried out using the above mentioned four types of the 
yield functions: von Mises, Hill48, Gotoh and Barlat Yld2000-2d. All the calculations took into 
account the Bauschinger effect in the framework of Y-U model.  

Y-U model incorporating with the high-ordered yield function (Gotoh or Yld2000-2d) was 
implemented into the FE code LS-DYNA, and using this, the FE simulation of hat bending was 
carried out. The same simulation using the IH + von Mises's yield function was also carried out. Fig.6
(a) shows the final forming shapes of AA6016-T4 sheet after springback in R.D. bending calculated 
by these models, together with the experimental result. Y-U model + anisotropic yield functions of 
Gotoh and Yld2000-2d show enough accurate predictions of springback, while IH + von Mises yield 
function underestimates the amount of springback. The change of Young’s modulus is also taken into 
our simulations. 

Fig.5 Experimental set-up of hat-shaped draw bending (in mm) 
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(a) R. D. bending                                             (b) R.D. and T.D. bending 

Fig.6 Final shapes of bent sheets calculated by several types of constitutive models. 

As it is seen in Fig.6 (b), the final shapes of R.D. bending and T.D. bending are apparently 
different. It comes from the difference in flow stress levels between R.D. bending (under plane strain 
condition of σx:σy = 2:1) and T.D. bending (σx:σy = 1:2). Y-U model + Gotoh yield function captures 
this anisotropic springback behavior.

6. Concluding remarks 
Hat-shaped draw bending experiments were performed on type AA6016-T4 aluminum sheet with 
strong planar anisotropy. From the experiment, it was found that springback of R.D. bending differs 
from T.D. bending. For accurate simulation of such anisotropic behavior of springback, the selection 
of anisotropic yield function is very important, as well as modeling of the Bauschinger effect. For the 
AA6016-T4 sheet, Yoshida-Uemori kinematic hardening model + anisotropic yield functions of 
Gotoh and Barlat Yld2000-2d show enough accurate predictions of springback. 
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