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We present our recent achievement of computational studies on improvement of formability of 
aluminum alloy sheets by texture control. First, the effects of typical texture components (copper, 
brass, S, cube and Goss) usually observed in rolled aluminum alloy sheets on forming limit strains 
are numerically studied. It is shown that only the cube texture component yields forming limit 
strains much higher than those for a random texture in the biaxial stretch range, while the other four 
texture components tend to yield lower forming limits. Furthermore, it is found that when the 
orthotropic axes of a material with the cube texture are inclined at 45˚ relative to the major stretch 
direction, abnormally high forming limits are obtained for near the in-plane plane strain forming 
paths, and it is revealed that the emergence of this high formability is attributed to the so-called 
geometrical or texture hardening behavior. Next, we seek a possibility for improvement in the 
formability of aluminum alloy sheets by utilizing the geometrical hardening behavior. 
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1. Introduction 
The formability of aluminum alloy sheets is generally poorer than that of standard steel sheets. One 
of the principal factors that affect the formability of polycrystalline sheets is considered to be the 
crystallographic texture, and intensive research has been carried out on understanding its influence 
on the formability of aluminum alloy sheets [1-3]. Effects of some texture components on the 
forming limits have been investigated by Barlat and Richmond [1] and Ratchev et al. [2]. Their 
analyses were based on yield loci calculated by Taylor-Bishop-Hill model with initial crystal grain 
orientations, and thereby changes of the texture during deformation and a vertex-type response of 
plastic strain rate were not taken into account. Recently, using a generalized Taylor-type polycrystal 
model [3] directly, Wu et al. [4] analyzed the forming limits for a family of the cube textures, which 
have some orientation scattering around the ideal {100} 001  orientation. It was found that the 
cube texture exhibits a significantly high formability in the biaxial stretch range. They, however, 
discussed only the effect of the cube texture on formability, and influences of the other texture 
components have not been revealed.    

In the present paper, we present our recent achievement of computational studies on 
improvement of the formability of aluminum alloy sheets by texture control [5, 6]. First, the effects 
of typical texture components observed in rolled aluminum alloy sheets on forming limit strains are 
numerically studied. In the analyses, the typical three rolling texture components (copper, brass and 
S) and typical recrystallization texture components (cube and Goss) are considered. The material 
response is described by a generalized Taylor-type polycrystal model in which each crystal grain is 
characterized by an elastic-viscoplastic continuum slip crystal plasticity constitutive relation. It is 
shown that only the cube texture component yields forming limit strains much higher than those for 
a random texture in the biaxial stretch range, while the other four texture components tend to yield 
lower forming limits. Furthermore, it is found that when the orthotropic axes of a material with the 
cube texture are inclined at 45˚ relative to the major stretch direction, abnormally high forming 
limits are obtained for near the in-plane plane strain forming paths, and it is revealed that the 
emergence of this high formability is attributed to the so-called geometrical or texture hardening
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phenomenon. Next, we seek a possibility for improvement in the formability of aluminum alloy 
sheets by utilizing the geometrical hardening behavior.  

2. Procedure of numerical computations 

2.1 Modeling of textures  
     In aluminum alloy sheets, the texture typically develops around copper ({112} 111 ), brass 
( {110} 112 ) and S ({123} 634 ) orientations during the rolling process, and around cube 
( {100} 001 ) and Goss ( {110} 001 ) orientations during the annealing process. In actual 
materials, some scattering of grain orientations around the above particular, ideal crystallographic 
orientations is observed. In the present series of analyses, a misorientation of each grain from the 
ideal orientation is represented by a rotation tensor R that is specified by an arbitrary chosen axis a
(a unit vector) with an angle . To generate a texture model that has scattering of grain orientations, 
the following procedure is repeated until the desired number of grains are obtained: (i) a value of 
is taken according to a Gaussian distribution with the mean value of zero and the standard deviation 

0 , (ii) a is randomly chosen, (iii) the ideal crystal orientation is rotated by R, and (iv) the three 
other equivalent orientations are created at the same time, in order to represent the orthotropic 
symmetries of the rolled sheet. 

2.2 Crystal plasticity model 
    A finite strain crystal plasticity model used here is along the lines presented in Peirce et al. [7]. 
The slip rate 

 

( )  on the th slip system is given by a power law dependence on the resolved shear 
stress ( ) ,

 
( )

= 0 sgn( ( ) ) ( ) / g ( ) 1/ m
, (1) 

where 
 0

 is a reference slip rate, m is a strain rate sensitivity exponent, and g( )  is a slip system 
hardness. The evolution law for g( )  is specified by 

 

g ( )
= h ( ) ,   h = h0 1+ h0 a / ( 0n)( )

n 1
,     a =

( ) dt
0

t
, (2) 

where 
0
 is the initial value of g( ) , h

0
 is the initial slip hardening modulus, n is a power law 

hardening exponent, and t  is time. An isotropic elasticity is assumed in the present applications, 
which is determined with the Young’s modulus E and Poisson’s ratio .
    As a model for a polycrystal, a Taylor type approach is adopted. The deformation in each grain is 
taken to be identical to the macroscopic deformation of the aggregate. Taking the volume fraction 
of each grain to be identical, the macroscopic stress  and macroscopic plastic strain rate Dp  are 
respectively obtained from averaging the Cauchy stress  and plastic strain rate Dp  in each grain 
over the total number of grains. A macroscopic equivalent plastic strain for polycrystal is defined by 

 = (2 / 3)Dp :Dp

0

t

dt . (3)

The material parameter values are chosen as m = 0.002, n = 0.35, and h
0
/

0
= 9.75, E /

0
= 1625, 

and = 0.3. 

2.3 Sheet necking analysis 
     Forming limit strains of textured sheets are analyzed using the Marciniak–Kuczy ski 
(M–K-)-type model [8]. A sheet specimen in the 1 2x x  plane with a band of initial inhomogeneity 
in the form of a reduced thickness under the plane-stress assumption is considered (Fig. 1). The 
rolling direction, RD, and transverse direction, TD, have an angle I  relative to the 1x  and 2x
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directions, respectively. The same texture model is assigned to the two regions inside and outside 
the imperfection band. In all computations performed here, linear strain paths, 

 = D22 / D11 = 22 / 11 , (4) 

are assumed outside the band, where Dij  are components of the rate of deformation tensor. The 
range of the strain ratio is taken to be –0.5 1. A number of computations are performed with 
different initial orientations of the imperfection band (here their interval is taken to be 5° ), and the 
minimum critical major strain is defined as the forming limit strain denoted by 

11

* . The initial 
imperfection value, i.e., the ratio of the thickness inside the band to that outside the band, is taken to 
be 0.999 for all computations in the present paper. 

Fig. 1.Textured sheet with orthotropy and an imperfection band with a slightly reduced thickness. 

3. Influence of the typical texture components on the forming limits 
Computed forming limit diagrams (FLDs) for the five texture components with 

0
 = 15˚ are shown 

in Fig. 2. The 
0
 of 15˚ is chosen to represent a realistic scattering of grain orientations around an 

ideal orientation. In the case where the RD coincides with the x
1
-direction (i.e. 

I
 = 0˚) only the 

cube texture gives formability significantly greater than that for the random texture in the biaxial 
stretch region ( > 0 ) as shown in Fig. 2(a). All the other textures yield poorer stretchability in 
comparison to that for the random texture. In the in-plane plane strain mode ( = 0 ), the limit strain 
for the cube texture is almost the same as that for the random one. Formability at = 0  is 
particularly important, because many failures often occur at strain paths near = 0 in stamping 
operations of automotive panels [9]. Fig. 2(b) shows FLDs when 

I
 = 45˚. For this orientation, the 

cube texture produces abnormally higher forming limits in the region 0.25 0.75 . Indeed, the 
limit strain *

11  of the cube texture for I =45˚ is 1.6 times greater than that for I =0˚.

(a)                 (b) 

Fig. 2. Computed forming limit diagrams for the five textures with 
0
=15˚: (a)  

I
=0˚; (b) 

I
 =45˚.
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    For the in-plane plane strain mode ( = 0 ), forming limit strains primarily depend on the 
work-hardening behavior: i.e. the higher the work-hardening rate, the higher the forming limit strain. 
Curves of amounts of normalized work-hardening rate H /

0.2
versus tensile strain 

11
for the case 

of 
I
 = 45˚ are depicted in Fig. 3. Here, H is a slope of 

11 11
 curve under the strain mode = 0 ,

and
0.2

 represents the value of 
11

 at  = 0.002. The value of H /
0.2

 for the cube texture is 
clearly higher than those for the other textures. Since we have assumed the same slip hardening law 
and the same material parameter values for all the textures, this enhanced hardening behavior can be 
attributed to the so-called geometrical (or texture) hardening that is caused by rotations of crystal 
grains.  

Fig. 3. Relationships between H /
0.2

 and 
11

 at = 0  for 
I
 = 45˚.

4. Possibility of improvement in the formability of aluminum alloy sheets by geometrical 
hardening 

As shown in the previous section, the cube texture exhibits a significant geometrical hardening 
under the in-plane plane strain mode ( = 0 ), when 

I
 = 45˚. Here, stress-strain relations at = 0

are computed for all possible crystal orientations, in order to seek specific orientations that lead to a 
high degree of geometrical hardening. To keep the orthotropy, each computational model consists 
of the corresponding four equivalent orientations. In this set of computations, no material hardening 
( h

0
 = 0 MPa) is assumed. Thus, variations of the macroscopic flow stress are solely responsible for 

the geometrical hardening (or maybe softening). The in-plane plane strain stretching up to  = 1.0 
is applied to each four grain model for the cases of 

I
 = 0˚, 22.5˚, 45˚. As a result, the maximum 

value of 
11
/

0
 is found to be1.6 for a model with an orientation ( , , ) = (63˚, 67˚, 5˚) (the 

Roe angle is used here) stretched in the direction of 
I
 = 0˚. Here 

0
 is the stress 

11
 at  = 0.01. 

The second largest 
11
/

0
 is 1.4, which appears near the cube orientation, when 

I
 = 45˚. But, the 

ideal cube orientation itself yields no geometrical hardening (i.e. 
11
/

0
 = 1.0). Using the 

procedure described in Section 2.1, textures developed around ( , , ) = (63˚, 67˚, 5˚) and around 
the cube orientation with scattering according to 

0
 = 5˚, 15˚ are created. Each texture model 

consists of 2000 discrete orientations. The computed stress–strain relations under the in-plane 
plane-strain stretching is shown in Fig. 4. For the texture developed at ( , , ) = (63˚, 67˚, 5˚), the 
normalized flow stresses 11 0/  at 11 = 1.0 are 1.6, 1.47 and 1.28 for 0 = 0, 5 and 15 ° ,
respectively. The geometrical hardening rapidly decreases with increasing 0 . On the other hand, 
the cube textures having scattering of orientations with 0 = 5˚ and 15 °  produce a strong 
geometrical hardening, although the ideal cube ( 0 =0˚) yields no hardening. Thus, the ideal cube 
orientation has played no role in the abnormally high formability for 

I
 = 45˚, which is observed in 

Fig. 2(b), and the high limit strain is attributed to orientations around the ideal cube.   
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(a)                 (b) 

Fig. 4. Geometrical hardening behavior in in-plane plane strain stretching: (a) texture developed at 
( , , ) = (63˚, 67˚, 5˚) with 

I
 = 0˚;(b) cube texture with 

I
 = 45˚.

    As shown in Fig. 4(b), the cube textures with scattering of orientations exhibit the significant 
amounts of geometrical hardening under the in-plane plane strain mode ( = 0 ) when the 
orthotropic axis is oriented at 45˚ relative to the tensile axis (i.e. 

I
 = 45˚).  They, however, does 

not yield any geometrical hardening for 
I
 = 0˚. Such strong anisotropy may be unfavorable in 

industrial productions. A sheet metal that has a texture with in-plane isotropy and sufficient 
amounts of geometrical hardening for any direction in in-plane stretch might be attractive. Based on 
the results of the present investigation, we propose the ND rotated cube texture that consists of 
scattered cube textures that are rotated about ND. The {111} pole figure and the geometrical 
hardening behavior for the ND rotated cube texture are depicted in Fig. 5. The predicted 
stress–strain curves for 0  = 5˚ and 15˚ are almost identical. Such a small amount of scattering of 
orientations (i.e. 0 5˚) yields the sufficient amount of the geometrical hardening. 

      
(a)                                                                      (b) 

Fig. 5. (a) {111} pole figure of computationally generated ND rotated cube texture ( 0 =5˚,
2000grains); (b) geometrical hardening behavior of ND rotated cube texture 

    The FLD for the ND rotated cube texture with 0  = 15˚ is shown in Fig. 6, together with FLDs 
for the random texture and the cube texture for 

I
= 0˚ and 45˚. In these computations, texture 

models with 2000 grains are used. The limit strains for the ND rotated cube texture are higher than 
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those for the random and for the cube texture with 
I

= 0˚ in the whole range of strain paths 
( 0.5 1.0 ). Since the ND rotated cube texture has in-plane isotropy, the FLDs for any values 
of 

I
 are identical.  The limit strain for the ND rotated cube at = 0  is, however, 20% lower than 

that for the cube texture with 
I

= 45˚.

Fig. 6. Forming limit diagrams for the ND rotated cube, random and cube textures. 

5. Concluding remarks 

In the present paper, it has been shown that only the cube texture component yields forming limit 
strains much higher than those for a random texture in the biaxial stretch range, while the other four 
texture components tend to yield lower forming limits, and that when the orthotropic axes of the 
cube texture material are inclined at 45˚ relative to the major stretch direction, abnormally high 
forming limits are obtained for near the in-plane plane strain forming paths. The emergence of this 
high formability is attributed to the so-called geometrical or texture hardening. Secondly, we have 
presented a possibility of improvement in the formability of aluminum alloy sheets by utilizing the 
geometrical hardening behavior. We have demonstrated that the ND rotated cube texture, which has 
in-plane isotropy, yields high forming limit strains for the whole range of biaxial strain paths.  
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