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With the thermo-kinetic software MatCalc, simulations of the evolution of precipitates in the course 
of thermo-mechanical treatment of heat-treatable Al-Mg-Si alloys are performed. Based on the 
calculated size distributions for the different stable and metastable precipitates, the evolution of the 
yield strength with time during different thermal processing routes is evaluated. The strengthening 
model used takes into account the contributions of the intrinsic yield strength of the aluminium 
matrix, solid solution hardening and precipitation hardening. For precipitation hardening, the 
coupling effect of multiple precipitates and the shape of the precipitates are considered as well as the 
mechanism change from particle cutting and to Orowan looping. The model is applied to isothermal 
age-hardening of Al-Mg-Si alloys. The comparison between the yield strength predicted by the 
simulations and experiment shows good agreement. 
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1. Introduction 
With increasing computational power and using a suitable thermo-kinetic software such as MatCalc 
[1], it is possible to simulate the evolution of precipitation sequences in any arbitrary heat treatment, 
provided the required thermodynamic and mobility databases are available. Till now the main 
drawback had been the unavailability of a suitable thermodynamic database, which includes also the 
metastable phases observed in 6xxx alloys. This task has been carried out recently, where the 
thermodynamic data has been assessed and tested satisfactorily [2, 3].  

In the presented paper, two types of approaches to calculate the yield strength evolution are 
utilized and validated by comparison with experimental data. The first approach is a simplified 
algorithm (in the following designated as Approach I) as presented in Refs. [4, 5]. This approach 
considers the accumulative effect of solid solution hardening and precipitation hardening due to 
shearing and bypassing of particles by dislocations. Input values are mean radii and volume fraction 
of precipitates, which have been calculated in kinetic simulations carried out with MatCalc [1]. 

The second approach (in the following designated Approach II) is a more sophisticated version 
and considers not only the solute strengthening effect, but also chemical hardening, the coherency 
strain effect and the modulus mismatch effect in competition with the classical Orowan mechanism 
for each phase. The chemical hardening effect includes anti-phase boundary effects, the 
stacking-fault energy (SFE) and interfacial energy effects. This approach has been already 
implemented in the software MatCalc and has been used for simulation of the yield strength evolution 
in Cu-precipitation strengthened ferritic steel [6]. 

The calculated yield strength with both approaches is verified against experimental results and 
discussed subsequently. 

 
2. Mathematical modelling

In aluminium alloys, a number of different strengthening mechanisms are operative, which all 
contribute to the overall yield strength. The most important contributions to age hardening of 
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aluminium alloys are precipitation strengthening σp due to shearing and bypassing of particles by 
dislocations and solid solution hardening σss [4, 5].   

2.1 Approach I (simplified model) 

2.1.1 Precipitation hardening 
In real systems some of the particles Ni will act as weak (shearable) and the rest as strong 

(non-shearable) obstacles. The mean obstacle strength Fmean can be conveniently written as [4] 
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where Ni is the number density of particles, which belong either to the weak or to the strong 
population. Fi is the corresponding obstacle strength. 

The parameter Fmean,weak  is proportional to the particle radius ri, as long as ri is smaller than the 
critical radius for shearing rc [4, 5]: 
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G is the shear modulus of the aluminium matrix, b is the magnitude of the Burgers vector and ß is 
a constant, usually taken as 0.36 [4]. 

For non-shearable (strong) particles, where the radius is bigger than the critical radius ri > rc, the 
obstacle strength Fmean, strong will be independent of ri and therefore constant [4, 5]: 

  ²2, ßGbF strongmean                                                                (3) 

The various parameters of equations (2) and (3) can be rewritten in the parameter kppt [4, 5] with 
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In the present model for approach I, the ratio for precipitation strengthening for small (shearable) 
particles ( rms ,phase  = mean radius of particles smaller than critical radius) is described as 
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For the large (non-shearable) particles of each phase ( phasemb
r , ), the equation for usage in MatCalc  

reads 
12
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The precipitation strengthening formula used in the actual model for each phase, p,phase can be 
written as 
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where npsmall,phase is the number of precipitates of one phase smaller than some critical coherency 
radius, npbig,phase is the number of precipitates larger than a critical coherency radius and Nprec,phase is 
the total number of precipitates of each phase.  

1444



 

The overall macroscopic precipitation hardening influenced by all considered phases is expressed as 


n
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2.1.2 Solid solution hardening 

The solution of the elements Mg and Si in the Al matrix gives rise to the solid solution 
strengthening effect. The individual terms of the strengthening contribution can be superimposed and 
the total solution strengthening ss can be represented by following term [4, 5] 
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n
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The parameters ki for the alloying elements are defined in Table 4, ci is the weight fraction of the 
element in the matrix.  
 
2.1.3 Overall macroscopic yield strength 
 

The expression for the lower macroscopic yield strength LYS becomes 

pssiLYS    .                                                                (10) 

In Eq. 10, i is taken equal to the intrinsic yield strength of pure aluminium (  = 28 MPa) [7]. 

 

2.2 Approach II (complex model) 

2.2.1 Chemical strengthening 
In chemical strengthening, the increase in strength occurs due to the production of new particle – 

matrix interface after a precipitate is sheared by a dislocation. This effect can be represented by the 
following term  

                        2/3
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where M is the Taylor factor, T is the line tension of the dislocation, λ is the mean particle spacing 
in the slip plane, b is the Burgers vector, N is the number and r is the mean radius of the precipitates of 
each phase. 

2.2.2 Misfit strengthening 

Due to coherency of the early precipitates with the Al matrix and volumetric misfit strains, an 
elastic stress field exists in the matrix around the precipitates [6] giving rise to coherency 
strengthening with  

   (12) 
  

In the formula, G is the shear modulus, ε is the lattice mismatch, N is the corresponding number 
density and r represents the mean particle radius. 
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2.2.3 Modulus strengthening effect 

This strengthening contribution occurs due to the differences of the elastic moduli of 
precipitate and matrix. We have assumed that the elastic moduli of the metastable phase were 
similar (=120 GPa) as for elastic modulus of the stable Mg2Si (ß phase), as reported with 113.5 
GPa [8]. 
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U1 and U2 are the line energies of the dislocation in the precipitate and in the matrix. Term ri is the 
inner cut-off radius of the dislocations stress field (= 2.5b) and r0 is the outer cut-off radius equal to 
1000 ri. This ratio corresponds to the ratio of the products of shear modulus and Burgers vector 
squared [6] 

 

2.2.4 Antiphase boundary effect 

The penetration of a dislocation through a particle is accompanied by the formation of an antiphase 
boundary (APB). This effect can be described with [9] 
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The volume fraction of precipitates is given by the term f and γapb is an average value of the APB 
energy in the precipitate. 

2.2.5 Orowan mechanism 

The precipitate-dislocation interaction changes from shearing to bypassing of hard particles by 
looping. The corresponding stress is [6] 
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Where C is a constant close to 0.4 and  is the Poisson ratio.  

To calculate the overall precipitation strengthening effect (σp), the different mechanisms (2.2.1 – 
2.2.4 for cutting and 2.2.5 for looping) are superimposed as 

 

(16) 
where nshear  and nloop are the corresponding density fractions and σ the strengthening contributions 

with α being 1. 

Finally, the lower yield strength (LYS) evolution can be calculated by adding the strengthening 
effects linearly as given in Eq. 10.                                                             
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3. Experimental
 

The chemical composition of the 6016 alloy used for the experiments is given in Table 1. 
 

 The alloy was solution heat treated at 550°C for 1h, water quenched to room temperature (RT) at 
25°C , stored at RT for 6 days and finally aged at 185°C for 8h and tested.   

Sample preparation and tensile tests were carried out according to the standard EN 10002-1.     

Table 1. Chemical composition of experimental aluminium alloys (in wt.%) 

Alloy Si Mg Cu Mn Fe 
Ι 1.07 0.34 0.07 0.07 0.18

4. Results
For the numerical simulations in MatCalc [1], the input data are summarized in Tables 2 and 3. The 
parameters mentioned in the formula above are summarized in Table 4. 

 
Table 2. Parameter set for precipitates of 

AA6xxx in MatCalc 
  

Phase Nucleation 
site 

Interfacial 
energy – corr. 
factor 

Volumetric 
misfit  

GP zones Bulk 0.9 0.01 
β′′ Bulk 0.85 0.02 
β′ Dislocations 0.95 0.00 
β  Dislocations Default value 0.00 
Si  Dislocations Default value 0.05 

 

Table 3. Parameter set for precipitation 
domain of AA6xxx in MatCalc 

 
Parameter  Value (unit) 

Young’s modulus  77.93·109-(7.3·106)*T (Pa) 
Poisson’s ratio 0.33 
Dislocation density 6·1013 (m-2) 
Mean diff.  distance Autom. Calc.  
Excess Va efficiency 1.0 

 
The volumetric misfit for the GP-zones and the β′′ phase are representing the misfit in the 

surrounding bulk. The latter precipitates are assumed to nucleate at dislocation, where the volumetric 
misfit between the lattice of the bulk and the phases are negligible. Only for Si, where volumetric 
misfit is quite large (>20%) [10], a correcting value is set in a reasonable amount of 5% for modeling. 

 
Table 4. Summary of input data used in the strengthening models 

 
Parameter  Value  Comments 
rc  5*10-9 From [4, 5] 
M 3.1 From [4, 5] 
ß 0.36 From [4, 5] 
b (m) 2.84*10-10 From [4, 5] 
G (N/m²) 2.7*1010 From [4, 5] 

σi (MPa) 28 From [7] 

kSi (MPA/wt%2/3) 66.3 From [4, 5] 

kMg (MPA/wt%2/3) 29.0 From [4, 5] 

Figures 1 and 2 show the simulated yield strength for approaches I and ΙΙ in comparison to the 
experimentally measured data. 
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U1 and U2 are the line energies of the dislocation in the precipitate and in the matrix. Term ri is the 
inner cut-off radius of the dislocations stress field (= 2.5b) and r0 is the outer cut-off radius equal to 
1000 ri. This ratio corresponds to the ratio of the products of shear modulus and Burgers vector 
squared [6] 
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Where C is a constant close to 0.4 and  is the Poisson ratio.  

To calculate the overall precipitation strengthening effect (σp), the different mechanisms (2.2.1 – 
2.2.4 for cutting and 2.2.5 for looping) are superimposed as 
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Fig. 1. Approach I – comparison between observed and 

predicted LYS  
 

 
Fig. 2. Approach II – comparison between observed and 

predicted LYS 
   

5. Summary and conclusion 
Both presented models can provide a firm basis for simulation of the evolution of yield strength in 

Al-Mg-Si alloys. The peak hardness corresponding to the precipitation of beta double prime phase is 
in accordance with the experimental data. The more generic approach II has the advantage that the 
overall macroscopic yield strength can be well-understood by all relevant strengthening mechanism 
and gives information about the influence of each effect. Approach I reaches the same results and is 
able to give estimations of the yield strength very easily, if the fraction of the phases are available.  

In the open literature, the strengthening calculations generally use a mean composition for just 
one precipitation phase. In the present work, we calculate the effective mechanisms for each phase of 
the precipitation sequence: GP-zones → ß’’→ ß’ → ß (Mg2Si) + Si and, therefore, we are able to 
analyse the effect of each mechanism for each phase. 
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