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The effect of welding speed on strength and corrosion behavior of FSW 2024-T3 joints was 
investigated in the present study. For both strength and corrosion, the transition from the 
thermo-mechanically affected to the heat affected zone (TMAZ/HAZ) turned out to be the most 
critical site. Higher welding speeds produced both a smaller hardness drop in the TMAZ/HAZ and a 
smaller width of the softened zone. Thereby, tensile strength could be improved and the intergranular 
corrosion attack localized to the overaged TMAZ/HAZ could be reduced. Paradoxically, at lower 
heat input (i.e. at higher welding speed), the weld nugget region also suffered enhanced intergranular 
corrosion. SEM examinations of the top surface of FSW 2024-T3 joints revealed the presence of 
constitutionally melted Al2MgCu (S-phase) particles in that region. The S-phases were mainly 
localized to the advancing side of the joint, and their volume fraction increased with growing welding 
speed. Hence it is suggested that a focalization of the thermal source resulted in incipient melting. 
Eutectic S-phases were formed and served as preferential corrosion sites lowering corrosion 
resistance of the weld nugget. 
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1. Introduction 
Friction Stir Welding (FSW) [1], is a solid state welding technique which allows for producing high 
quality welds without solidification cracking, porosity, from aluminum alloys not recommended for 
fusion welding [2] . Although the overall temperatures occurring during the Friction Stir Welding 
process are well below the melting point, they are still high enough to generate microstructural 
changes even outside the stirred zone which decreases the mechanical performance of the joint [3]. 
With respect to corrosion, the microstructural variations represent galvanic couples producing 
corrosion damage when FSW joints are exposed to corrosive environments. The microstructure and, 
consequently, the corrosion behavior of FSW joints are strongly dependent on welding parameters. 
Lower heat input (i.e. lower rotational and/or higher travel speed of the weld tool) can reduce the 
susceptibility to corrosion, but concurrent change in strength may also take place. Usually, lower heat 
inputs are preferred in order to obtain the best compromise between mechanical and corrosion 
performance of the joints. The objective of this study is to investigate the effect of welding speed on 
strength and corrosion behavior of FSW 2024-T3 joints. 

2. Experimental
The material used was 4 mm thick unclad sheet of the alloys 2024-T3. Butt joints were produced 
using the DLR FSW equipment operated under position control mode following the TWI patent [1]. 
The welding parameters are and peak temperature at a distance of 15 mm from the weld center at 
retreating side (RS) are listed in table 1.Welding direction was always parallel to the rolling direction 
of the parent sheet. Vickers hardness measurements were made on the cross section of the welds 
along the half thickness line with a load of 9.81 N. The corrosion potential across the weld region was 
measured using rod-like specimens with a cross-section of 4×4 mm

 
taken at different distances of the 

weld center. The through thickness plane normal to the weld direction was immerse 24 hr into an 
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aqueous solution of 1 M NaCl with addition of hydrogen peroxide according to the ASTM G110 
standard. 

Table 1 Welding parameters and welding peak temperature of the parent plate recorded at retreating  

Specimen Rotational Speed 
[RPM] 

Welding Speed 
[mm/min] 

Temperature at RS 
[°C] 

Slow 850 100 - 
Mid speed 850 200 202 
Standard 850 300 160 

Fast 850 400 154 
 
Results and Discussion
The increment of welding speed produced several changes in the hardness profiles of the FSW 
2024-T3 weld joints (Fig. 1). At center of the welded joints, an increase in hardness was induced. The 
hardness values of the coldest FSW 2024-T3 weld nugget was higher than that of the base metal. 
From literature, it is well known that the thermo mechanical process applied during friction stir 
welding produce dissolution of the strengthening phases followed by a natural aging process [3,4]. 
Therefore, hardness values close to the natural aged 2024-T3 aluminum alloy were expected. 
However, the values of the slowest FSW-joint were just below compared to those of the base metal, 
while those of the Fast-joint attained values close to those of a AA 2024-T851 (146 HV). According 
to the temperatures registered at the surface of the welding shoulder and the hardness values of the 
weld nugget, the microstructure of the FSW joints might present some degree of precipitation. An 
increase of hardness of the overaged TMAZ/HAZ also took place. Hardness values of 110 to 130 
HV1 were measured for the hottest and coldest FSW-joints respectively. The position of these low 
hardness regions moved closer to the center line of the weld nugget as welding speed increased as a 
result of lower peak temperatures and faster thermal transients. 

 
Fig. 1 Hardness profiles of FSW 2024-T3 joints produced using different welding speeds 

 
Fig. 2 shows the corrosion potential measured according to ASTM G69 across the friction welded 
2024-T3 joints produced with the lowest and fastest welding speed. Values of the 2024-T3 and 
2024-T8 base alloys are also indicated. In both FSW-joints, the weld nugget region exhibited the 
more active potentials. The open circuit potential increased through the thermo-mechanically 
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affected and heat affected zones. In the case of the coldest joint the potential at HAZ was quite similar 
to the value of the base alloy 2024-T3 (-0.608 Vsce), while the potentials of the HAZ of hottest weld 
were still more active than the base metal. The highly active corrosion potentials of the weld nuggets 
of both “slowest” and “fastest” FSW 2024-T3 joints might be attributed to precipitation of Cu 
containing phases (i.e. S’(S) phases) in these regions. The quantity of such Cu containing particles is 
affected by the welding thermal cycle. At higher heat inputs (i.e. slower welding speeds) more 
material is exposed to the precipitation temperatures allowing for higher degree of overaging. 
Conversely, at higher welding speeds more localized thermal cycles are produced, and therefore, less 
material is affected. 

 
Fig. 2 Corrosion potential profiles across friction stir welds of alloy 2024-T3 produced with different 

travel speeds 
 
Fig. 3 shows the transversal sections of the specimens of FSW 2024-T3 joints welded with different 
welding speeds after 24hr immersion in an aqueous chloride-peroxide solution according to ASTM 
G110. The vertical line indicates the center of the weld nugget. The location of the maximum 
corrosion attack was found at both sides of the fine grain zone nugget in the TMAZ/HAZ. Closer 
examination of these zones indicates a high susceptibility to intergranular corrosion. A direct relation 
between the welding speed (heat input) and maximum depth of corrosion of the TMAZ/HAZ was not 
observed. All FSW 2024-T3 joints displayed depths of corrosion between 230 to 290 μm. Nevertheless, 
the width of the corroded zones and its distance from the weld center decreased as the travel speed 
increased. The decrement of width of the corroded zones at TMAZ varied in the same mode as the peak 
temperature at shoulder did. 
 

Fig. 3 Cross transversal sections of FSW 2024-T3 after 24hr immersion in chloride-peroxide solution 
(a) 100 mm/min, (b) 200 mm/min, (c) 300 mm/min, (d) 400 mm/min 
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Conversely, the weld nugget region became more susceptible to corrosion at higher welding speeds 
than at lower travel speed being basically immune to intergranular corrosion (Fig 4). This corrosion 
behavior is in disagreement with the thermal conditions measured at welding shoulder. It has been 
expected that with lower thermal regimens (i.e. faster welding speeds) better corrosion resistance 
would have been produced. The depth of the corrosion attack in this zone reached similar values to 
those of the overage TMAZ/HAZ, about 200 µm.  
 
    AS     RS 

 
Fig.4 Effect of welding speed on corrosion behavior of FSW 2024-T3 weld nugget region at the face 

side (a) 100 mm/min, (b) 400 mm/min
 
More detailed inspection of the weld nugget region of the Fast weld (400 mm/min) revealed the 
presence of intergranular precipitates near to the top surface, being in more quantity in the flow arm 
on the advancing side of the weld. (Fig. 5) In some cases, these intergranular particles formed 
continuous lines, which were oriented parallel to the surface of the joint. The particles were rather 
equiaxed and exhibited a lamellar microstructure characteristic of an eutectic phase (see Fig. 5d). The 
size of these intergranular eutectic phases was 2-3 µm. The particles contain Al, Cu and Mg, as 
revealed by EDX analyses, suggesting to be S-phase (see Table 2). 
 

 
Fig. 5 Intergranular precipitates found in the flow arm region near to the top surface of the FSW 

2024 T3 revealed after etching with Keller’s reagent. Arrows in (b-Advancing side) and (c-retreating 
side) indicate the location of the micrographs. 
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The occurrence of these intergranular particles in the Fast-joint can be attributed to an incipient 
melting of the existing constitutional S phases during the welding process. The peak temperature 
measured at the weld center of FSW 2024-T3 joint was 507 °C before the pin arrived. This 
temperature is quite close to the eutectic temperature of the 2024 aluminum alloy [5]. It can be, 
therefore, expected that higher temperatures are reached at the interface between the shoulder and 
plasticized material due to the heating produced by plastic deformation [6]. These severe thermo 
mechanical conditions might cause fragmentation and melting of the constitutional S-phase particles, 
producing a partially liquid film. This film was subsequently redistributed by stirring of the welding 
tool. The higher temperatures generated by the larger deformation gradients under the shoulder close 
to the pin on the advancing side [6,7] might promote a more complete liquation of the S- phase 
constituents decorating the grain boundaries. On the other hand, the lower temperatures reached on 
the retreating side, as suggest by the partially recrystallized material at the top surface of the joint in 
this area, might have only caused the liquation of these Al2CuMg constituents, which are situated 
much closer to the surface.  
 
Once that the welded joint are exposed to a corrosive medium, the eutectic phases found in material 
flow arm at the top surface of the material flow arm act as corrosion damage site. As shown in Fig. 6, 
the SEM examination of the corroded surface revealed preferential dissolution of the matrix 
surrounding the liquated S phases. The regions contiguous to these constituent S phase particles 
corroded in form of pitting attack. The Al matrix around the S phase particles dissolved substantially 
leaving smaller particles spread over the corroded matrix (Figure 6b).EDX analyses of the original 
eutectic S-phase remnant (Figure 6) left behind after corrosive attack are summarized in Table 2. The 
change in chemical composition indicates that the eutectic Al2CuMg particle experienced a severe 
de-alloying of Al and Mg during immersion. As a result, a nobler remnant (enriched in Cu) was left 
behind. The presence of oxygen may indicate the formation of a (hydr-) oxide layer on the surface of 
the S- phase remnant after corrosion.  
 
Table 2 Chemical composition of the eutectic S-phase remnant after 4 h immersion in a 3.5% NaCl 

aqueous solution (concentration in wt %) 
Condition Al Cu Mg O 

Prior to corrosion 46 44.8 9.2 ------ 
corroded 11.87 76.5 0.81 11 

 

 
Fig.6 SEM micrographs of Al–Cu–Mg-containing eutectic phase particles in FSW 2024-T3 joint 

after 4h exposure to an aqueous 3.5 wt -%  NaCl aqueous solution 
 
The above observations indicate that the corrosion attack at the top surface of the FSW joint can be 
associated with galvanic coupling between the constitutionally melted S-phase particles and the 
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aluminum matrix. The mechanism of localized corrosion may be comparable to that occurring 
between coarse constituent S-phase particles and the surrounding matrix in AA 2024-T3 base 
material [8-10]. In presence of chloride containing corrosive media, the S-phase precipitates are 
initially anodic to the aluminum matrix. Due to an unfavorable cathode-to-anode surface ratio, 
galvanic corrosion concentrates on the small anode, producing an accelerated attack of the particle. 
Preferential dealloying of Mg might occur. As dealloying continues, the intergranular S-phase 
precipitate remnants become richer in Cu turning into cathodes towards the adjacent Al matrix. 
Consequently, the opposed galvanic couple of “now” anodic aluminum matrix and cathodic Cu-rich 
S-phase remnant is activated, causing the preferential dissolution of the surrounding Al matrix. 
 
Conclusions

 Better mechanical properties were attained in both heat affected zone and weld nugget. At the 
TMAZ/HAZ, the width of the low hardness zone as well as the hardness drop (hardness 
minimum) was reduced, corresponding with thermal history experienced by these zones. An 
increment in hardness was also observed in the weld nuggets of the FSW-joints. Post weld 
heat treatments indirectly revealed some degree of precipitation.  

 
 FSW 2024-T3 displayed high susceptibility to intergranular corrosion of the TMAZ/HAZ and 

weld nugget after corrosion tests. The location of the attack was controlled by galvanic 
coupling between the different regions of the weld and was affected by the processing 
parameters. The TMAZ/HAZ corrosion susceptibility was reduced with increment of weld 
speed, corresponding to the thermal cycle experienced by these zones.  

 
 The weld nugget region of the FSW-joints presented an unexpected increase of corrosion 

attack. The enhanced susceptibility to intergranular corrosion in the FSW joints was found to 
be caused by the incipient melting of copper-rich constitutional particles; most probably 
S-phase (Al2CuMg). 
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