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In the present study an age-hardening model for Al-Mg-Si alloys has been developed considering 
cylindrical morphology with constant aspect ratio for precipitates of constant stoichiometry Mg2Si. 
Although the shape of the precipitates has been recognized as an important factor controlling the 
mechanical properties of Al-Mg-Si alloys, the vast majority of precipitation models assume spherical 
precipitates. In the developed model, it is assumed that precipitation during underageing is controlled 
by simultaneous nucleation and growth and then after peak-age, it becomes coarsening-controlled. 
The transition from nucleation-growth regime to the coarsening regime happens when the 
concentration of the alloying element in the matrix becomes equal to the equilibrium concentration. 
The developed microstructural models are then combined with a precipitation-strengthening model to 
predict the evolution of yield strength of Al-Mg-Si alloys during ageing. The predictions of the model 
are in a good agreement with experimental data.  
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1. Introduction 
Simulations of precipitation reactions and precipitation strengthening during ageing have gained 
considerable interest during the past decades [1-11]. The idea of combining precipitation reaction 
models with precipitation strengthening models was first introduced by Shercliff and Ashby [12-13]. 
They developed “a mathematical relation between process variables (alloy composition, and ageing 
temperature and time) and the alloy strength based on physical principles (thermodynamics, kinetics 
theory, and dislocation mechanics) [13] ”. The first age-hardening model was successfully applied to 
2000 and 6000 series aluminum alloys. Since then, a lot of attempts have been made to develop new 
age hardening models for different applications; i.e. isothermal ageing of naturally aged [2], pre-aged 
[1], and pre-deformed alloys [14], non-isothermal ageing [3], precipitation reactions during ageing 
[15], and multi-stage ageing [16,17]. For the sake of simplicity, the various previously developed 
age-hardening models use the simple assumption of spherical particles in a metal matrix. 
Nevertheless, the presence of the elongated needle-like β'' and rods of β' precipitates phase both 
oriented in <001>Al directions is thought to be the main source of hardening [18-20]. The objective 
of the present paper is to develop an ageing model which is able to predict the evolution of radius and 
length of precipitate as well as their number density and volume fraction during isothermal ageing. 
The precipitates are assumed to be cylindrical with constant aspect ratio. The microstructural 
reactions are divided into two parts: (i) Simultaneous nucleation and growth during underageing and 
(ii) coarsening during overageing. In order to model the simultaneous nucleation and growth of 
precipitates, the ageing time is divided into a series of smaller steps wherein the variation in the mean 
concentration of alloying elements in the matrix is assumed to be negligible. During each time step a 
new group of precipitates are added to the system while previously formed particles keep growing. In 
the end of the time step, the mean concentration of alloying element in the matrix is updated. This 
continues until the peak-age point where the coarsening starts. The beginning of coarsening is when 
the concentration of alloying element in the matrix decreases to the interface equilibrium value. The 
microstructural outputs of the model are then used predict the yield strength of the Al-Mg-Si alloys. 
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2. Age-hardening model 
Precipitation is a phenomenon where the initial supersaturated alloy is decomposed into matrix and a 
new phase which is an agglomeration of solute atoms. The precipitation is traditionally categorized 
into three stages: Nucleation, growth, and coarsening. In this model, simultaneous nucleation and 
growth is assumed to happen first as long as there is enough solute remained in the matrix, and as 
soon as the mean concentration of alloying element in the matrix is reached to the equilibrium value, 
the coarsening starts. In the microstructure model, it is also assumed that there is no precipitation 
sequence and metastable β" and β' precipitates are in meta-equilibrium with the matrix right from the 
beginning of ageing. These assumptions have been already successfully applied to modeling the 
precipitation hardening in Al–Mg–Si alloys [3-5]. In order to simplify the problem, it is assumed that  

• All the precipitates have cylindrical morphology 
• The aspect ratio of precipitates is constant during ageing 
• The stoichiometry of precipitates is Mg2Si from the beginning 
• The interfacial energies at the tip and at the rim of precipitates are identical 
• Copper is assumed to remain in solid solution 
• The kinetics is controlled by the diffusion of Mg in the matrix 

Figure 1 shows the schematic representation of the assumed cylindrical morphology, having the 
aspect ratio (A), which is defined as h/r (h is the half length and r is the radius of precipitates). 

Fig. 1: Schematic representation of the assumed cylindrical morphology for precipitates 

Assuming that precipitates nucleate with the cylindrical morphology, the change in the Gibbs 
free energy of the system due to nucleation can be written as 

2 22 4 2nucl vG r h G rh rπ π γ π γ∆ = − ∆ + + .   (1) 

where vG∆  is the driving force per mole of solute atom to transform to precipitate from 
supersaturated solid solution and γ is the interfacial energy between precipitate and the matrix.  
Using the definition of aspect ratio, critical radius is calculated as 
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where Cm is the mean concentration of alloying element in the matrix, Ce is the equilibrium 
concentration of alloying element, and vm is the molar volume of precipitate. Provided that the 
incubation time and elastic coherency strains around the nucleated particles can be neglected the 
nucleation rate J is conveniently expressed as [7] 

0 exp( )dQGJ J
RT RT

∗∆= − − ,     (4) 

where J0 is a pre-exponential term, ∆G* the energy barrier and Qd the activation energy for diffusion 
of the controlling alloying element. Based on the classic theory of nucleation, Myhr et al. [16] 
proposed an approximate expression to calculate G∗∆ . This equation is given below 
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where 0A is a temperature-dependent constant. Peripheral and longitudinal growth rates of a 
needle-like precipitate of radius r  and half-length h are determined by the composition gradient 
outside the precipitate, the diffusivity of solute atoms, and the aspect ratio of precipitate. The 
diffusion-controlled thickening and lengthening of a precipitate approximately obey the following 
rules [21]: 
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where rC  is the equilibrium interface concentration around the precipitates. rC  is given by [22] 
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 As it is mentioned earlier, an iterative method is used to solve the set equation (6), (7), and (8). 
The ageing time during underageing is divided into a series of smaller time ranges ( t∆ ) in such a way 
that the ageing time in the ith step ( it ) is given by 

1i it t i t−= + ∆ .               (9) 

 If the t∆ is assumed to be very small, one can rationally assume that the change in 
supersaturaion during time period t∆ is negligible. Therefore, the increment in the radius of 
precipitate is calculated as 
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 At each time step, while previously-formed precipitates are growing according to equation (11), 
a new population of precipitates of radius crr nucleates. At the end of each time step, the mean 
concentration of alloying element in the matrix is updated using the below equation.  

2
0 2m p j j j

j
C C C r h Nπ= − ∑ .           (12) 

where jN  is the number of thj group of precipitates with radius jr and half-length jh . The ageing 
time would increase step-by-step as long as the calculated mean concentration of alloying element 
( mC ) is higher than the highest equilibrium interface concentration ( rC ). The time when mC becomes 
equal to rC is assumed to be the end of nucleation-growth regime and beginning of coarsening. The 
driving force for coarsening is provided by the difference between the size-dependent interfacial 
concentrations of alloying element and the remaining concentration of alloying elements in the 
matrix. The matrix concentration after peak-age and during coarsening is

peakrC . So, the supersaturation 
can be written as [22] 
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Putting the values of rC  and 
peakrC from Eq. (8) into Eq. (13), and the obtained equation into growth 
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and peak aget − are peak-age radius (radius of precipitates at peak-age point) and time (the 
time when coarsening starts) respectively.  

Strengthening model is a framework in which the overall strength of the artificially aged alloy can be 
obtained by the addition of the intrinsic strength of aluminum, the solid solution, and precipitates 
strength [4]. The contribution of precipitates to the total yield strength is given by [23]  
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where peakf is the volume fraction of precipitates at peak-age, B is a constant close to 0.5, b is the 
Burgers vector, M is the Taylor factor, m is a constant close to 0.6 [23], and rtrans is the radius above 
which precipitates are non-shearable (equal to 3.5 nm) [23]. The way how to calculate the 
contributions alloying elements in the matrix to the yield strength is explained in the literature [3].       
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3. Application of the model and discussion  
The developed model is applied to isothermal ageing of the alloy AA6061 (1.12 wt% Mg, 0.57 wt% 
Si, 0.25 wt% Cu). Figure 2 shows predictions of precipitate length in the alloy AA6061 aged at 190 
°C. The aspect ratio is chosen equal to 10 to get the right value at peak-age (10 ks).  
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Fig. 2: Prediction of the length of precipitate in the alloy AA6061 aged at 190 °C in the a) Log-scale 

and b) linear scale 

As it is seen, there is an overestimation of the modelling results in the underage regime. The 
precipitation sequence in this alloy is believed to be [23]  

SSSS → (Si and Mg clusters) → Mg/Si co-clusters → GP-zones → β" → β′  → β

where SSSS is the supersaturated solute solution, β″ is a needle-like precipitate, β′ is a rod-like 
precipitate, and β is the equilibrium phase in the precipitation sequence. In the early stage of ageing 
GP-zones have spherical morphology. Therefore, the assumption of constant aspect ratio through the 
ageing is not an entirely correct physically-based assumption.  Figure 3 shows the prediction of the 
yield strength of the alloy AA6061 together with experimental data at ageing temperature 170 °C. As 
it is seen there is a reasonably good agreement between experimental data and model predictions.   
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Fig. 3: Prediction of the yield strength of the alloy AA6061 aged at 170 °C. 

4. Summary 
A physically-based age-hardening model is developed for Al-Mg-Si alloys assuming cylindrical 
morphology for precipitates.  In the model it is assumed that the aspect ratio of precipitate is constant 
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where peakf is the volume fraction of precipitates at peak-age, B is a constant close to 0.5, b is the 
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during ageing, inferring that precipitates nucleate with cylindrical morphology. The model, applied to 
the isothermal ageing of the alloy AA6061, is fitted in such a way that it gives the right prediction for 
the length of precipitate at peak-age. The modelling results show an overestimation of the length of 
precipitate in the underage regime compared to the experimental data. This is due the assumption of 
constant aspect ratio through the whole ageing. The model also predicts the yield strength of the alloy 
AA6061 reasonably well.  
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